//! This module implements user space page fault handling with the `userfaultfd` ("uffd") system call on Linux. //! //! Handling page faults for memory accesses in regions relating to WebAssembly instances //! enables the runtime to protect guard pages in user space rather than kernel space (i.e. without `mprotect`). //! //! Additionally, linear memories can be lazy-initialized upon first access. //! //! Handling faults in user space is slower than handling faults in the kernel. However, //! in use cases where there is a high number of concurrently executing instances, handling the faults //! in user space requires rarely changing memory protection levels. This can improve concurrency //! by not taking kernel memory manager locks and may decrease TLB shootdowns as fewer page table entries need //! to continually change. //! //! Here's how the `uffd` feature works: //! //! 1. A user fault file descriptor is created to monitor specific areas of the address space. //! 2. A thread is spawned to continually read events from the user fault file descriptor. //! 3. When a page fault event is received, the handler thread calculates where the fault occurred: //! a) If the fault occurs on a linear memory page, it is handled by either copying the page from //! initialization data or zeroing it. //! b) If the fault occurs on a guard page, the protection level of the guard page is changed to //! force the kernel to signal SIGBUS on the next retry. The faulting page is recorded so the //! protection level can be reset in the future. //! 4. Faults to address space relating to an instance may occur from both Wasmtime (e.g. instance //! initialization) or from WebAssembly code (e.g. reading from or writing to linear memory), //! therefore the user fault handling must do as little work as possible to handle the fault. //! 5. When the pooling allocator is dropped, it will drop the memory mappings relating to the pool; this //! generates unmap events for the fault handling thread, which responds by decrementing the mapping //! count. When the count reaches zero, the user fault handling thread will gracefully terminate. //! //! This feature requires a Linux kernel 4.11 or newer to use. use super::{InstancePool, MemoryPool}; use crate::instance::Instance; use anyhow::{bail, Context, Result}; use rsix::io::{madvise, Advice}; use std::thread; use userfaultfd::{Event, FeatureFlags, IoctlFlags, Uffd, UffdBuilder}; use wasmtime_environ::{DefinedMemoryIndex, EntityRef, MemoryInitialization}; const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize; fn decommit(addr: *mut u8, len: usize) -> Result<()> { if len == 0 { return Ok(()); } unsafe { // On Linux, this tells the kernel to discard the backing of the pages in the range. // If the discarded pages are part of a uffd region, then the next access will fault // and the user fault handler will receive the event. // If the pages are not monitored by uffd, the kernel will zero the page on next access, // as if it were mmap'd for the first time. madvise(addr as _, len, Advice::LinuxDontNeed).context("madvise failed to decommit")?; } Ok(()) } pub fn commit_memory_pages(_addr: *mut u8, _len: usize) -> Result<()> { // A no-op as memory pages remain READ|WRITE with uffd Ok(()) } pub fn decommit_memory_pages(addr: *mut u8, len: usize) -> Result<()> { decommit(addr, len) } pub fn commit_table_pages(_addr: *mut u8, _len: usize) -> Result<()> { // A no-op as table pages remain READ|WRITE Ok(()) } pub fn decommit_table_pages(addr: *mut u8, len: usize) -> Result<()> { decommit(addr, len) } #[cfg(feature = "async")] pub fn commit_stack_pages(_addr: *mut u8, _len: usize) -> Result<()> { // A no-op as stack pages remain READ|WRITE Ok(()) } #[cfg(feature = "async")] pub fn decommit_stack_pages(addr: *mut u8, len: usize) -> Result<()> { decommit(addr, len) } /// This is used to initialize the memory pool when uffd is enabled. /// /// Without uffd, all of the memory pool's pages are initially protected with `NONE` to treat the entire /// range as guard pages. When an instance is created, the initial pages of the memory are /// changed to `READ_WRITE`. /// /// With uffd, however, the potentially accessible pages of the each linear memory are made `READ_WRITE` and /// the page fault handler will detect an out of bounds access and treat the page, temporarily, /// as a guard page. pub(super) fn initialize_memory_pool(pool: &MemoryPool) -> Result<()> { if pool.memory_size == 0 || pool.max_wasm_pages == 0 { return Ok(()); } for i in 0..pool.max_instances { for base in pool.get(i) { unsafe { region::protect( base as _, pool.max_wasm_pages as usize * WASM_PAGE_SIZE, region::Protection::READ_WRITE, ) .context("failed to initialize memory pool for uffd")?; } } } Ok(()) } /// This is used to reset a linear memory's guard page back to read-write as the page might be accessible /// again in the future depending on how the linear memory grows. fn reset_guard_page(addr: *mut u8, len: usize) -> Result<()> { unsafe { region::protect(addr, len, region::Protection::READ_WRITE) .context("failed to reset guard page") } } /// Represents a location of a page fault within monitored regions of memory. enum FaultLocation { /// The address location is in a WebAssembly linear memory page. /// The fault handler will copy the pages from initialization data if necessary. MemoryPage { /// The address of the page being accessed. page_addr: *mut u8, /// The length of the page being accessed. len: usize, /// The instance related to the memory page that was accessed. instance: *mut Instance, /// The index of the memory that was accessed. memory_index: DefinedMemoryIndex, /// The Wasm page index to initialize if the access was not a guard page. page_index: Option, }, } /// Used to resolve fault addresses to a location. /// /// This implementation relies heavily on how the linear memory pool organizes its memory. /// /// `usize` is used here instead of pointers to keep this `Send` as it gets sent to the handler thread. struct FaultLocator { instances_start: usize, instance_size: usize, max_instances: usize, memories_mapping_start: usize, memories_start: usize, memories_end: usize, memory_size: usize, max_memories: usize, } impl FaultLocator { fn new(instances: &InstancePool) -> Self { let instances_start = instances.mapping.as_ptr() as usize; let memories_start = instances.memories.mapping.as_ptr() as usize + instances.memories.initial_memory_offset; let memories_end = instances.memories.mapping.as_ptr() as usize + instances.memories.mapping.len(); // Should always have instances debug_assert!(instances_start != 0); Self { instances_start, instance_size: instances.instance_size, memories_mapping_start: instances.memories.mapping.as_ptr() as usize, max_instances: instances.max_instances, memories_start, memories_end, memory_size: instances.memories.memory_size, max_memories: instances.memories.max_memories, } } /// This is super-duper unsafe as it is used from the handler thread /// to access instance data without any locking primitives. /// /// It is assumed that the thread that owns the instance being accessed is /// currently suspended waiting on a fault to be handled. /// /// Of course a stray faulting memory access from a thread that does not own /// the instance might introduce a race, but this implementation considers /// such to be a serious soundness bug not originating in this code. /// /// If the assumption holds true, accessing the instance data from the handler thread /// should, in theory, be safe. unsafe fn get_instance(&self, index: usize) -> *mut Instance { debug_assert!(index < self.max_instances); (self.instances_start + (index * self.instance_size)) as *mut Instance } unsafe fn locate(&self, addr: usize) -> Option { // Check for a linear memory location if addr >= self.memories_start && addr < self.memories_end { let index = (addr - self.memories_start) / self.memory_size; let memory_index = DefinedMemoryIndex::new(index % self.max_memories); let memory_start = self.memories_start + (index * self.memory_size); let page_index = (addr - memory_start) / WASM_PAGE_SIZE; let instance = self.get_instance(index / self.max_memories); let init_page_index = (*instance).memories.get(memory_index).and_then(|m| { if (addr - memory_start) < m.byte_size() { Some(page_index) } else { None } }); return Some(FaultLocation::MemoryPage { page_addr: (memory_start + page_index * WASM_PAGE_SIZE) as _, len: WASM_PAGE_SIZE, instance, memory_index, page_index: init_page_index, }); } None } } /// This is called following a fault on a guard page. /// /// Because the region being monitored is protected read-write, this needs to set the /// protection level to `NONE` before waking the page. /// /// This will cause the kernel to raise a SIGBUS when retrying the fault. unsafe fn wake_guard_page_access(uffd: &Uffd, page_addr: *const u8, len: usize) -> Result<()> { // Set the page to NONE to induce a SIGBUS for the access on the next retry region::protect(page_addr, len, region::Protection::NONE) .context("failed to change guard page protection")?; uffd.wake(page_addr as _, len) .context("failed to wake guard page access")?; Ok(()) } /// This is called to initialize a linear memory page (64 KiB). /// /// If paged initialization is used for the module, then we can instruct the kernel to back the page with /// what is already stored in the initialization data; if the page isn't in the initialization data, /// it will be zeroed instead. /// /// If paged initialization isn't being used, we zero the page. Initialization happens /// at module instantiation in this case and the segment data will be then copied to the zeroed page. unsafe fn initialize_wasm_page( uffd: &Uffd, instance: &Instance, page_addr: *const u8, memory_index: DefinedMemoryIndex, page_index: usize, ) -> Result<()> { // Check for paged initialization and copy the page if present in the initialization data if let MemoryInitialization::Paged { map, .. } = &instance.module.memory_initialization { let pages = &map[memory_index]; let pos = pages.binary_search_by_key(&(page_index as u64), |k| k.0); if let Ok(i) = pos { let data = instance.wasm_data(pages[i].1.clone()); debug_assert_eq!(data.len(), WASM_PAGE_SIZE); log::trace!( "copying linear memory page from {:p} to {:p}", data.as_ptr(), page_addr ); uffd.copy(data.as_ptr() as _, page_addr as _, WASM_PAGE_SIZE, true) .context("failed to copy linear memory page")?; return Ok(()); } } log::trace!("zeroing linear memory page at {:p}", page_addr); uffd.zeropage(page_addr as _, WASM_PAGE_SIZE, true) .context("failed to zero linear memory page")?; Ok(()) } unsafe fn handle_page_fault( uffd: &Uffd, locator: &FaultLocator, addr: *mut std::ffi::c_void, ) -> Result<()> { match locator.locate(addr as usize) { Some(FaultLocation::MemoryPage { page_addr, len, instance, memory_index, page_index, }) => { log::trace!( "handling fault in linear memory at address {:p} on page {:p}", addr, page_addr ); match page_index { Some(page_index) => { initialize_wasm_page(&uffd, &*instance, page_addr, memory_index, page_index)?; } None => { log::trace!("out of bounds memory access at {:p}", addr); // Record the guard page fault so the page protection level can be reset later (*instance).memories[memory_index].record_guard_page_fault( page_addr, len, reset_guard_page, ); wake_guard_page_access(&uffd, page_addr, len)?; } } } None => { bail!( "failed to locate fault address {:p} in registered memory regions", addr ); } } Ok(()) } fn fault_handler_thread(uffd: Uffd, locator: FaultLocator) -> Result<()> { loop { match uffd.read_event().expect("failed to read event") { Some(Event::Unmap { start, end }) => { log::trace!("memory region unmapped: {:p}-{:p}", start, end); let (start, end) = (start as usize, end as usize); if start == locator.memories_mapping_start && end == locator.memories_end { break; } else { panic!("unexpected memory region unmapped"); } } Some(Event::Pagefault { addr, .. }) => unsafe { handle_page_fault(&uffd, &locator, addr as _)? }, Some(_) => continue, None => bail!("no event was read from the user fault descriptor"), } } log::trace!("fault handler thread has successfully terminated"); Ok(()) } #[derive(Debug)] pub struct PageFaultHandler { thread: Option>>, } impl PageFaultHandler { pub(super) fn new(instances: &InstancePool) -> Result { let uffd = UffdBuilder::new() .close_on_exec(true) .require_features(FeatureFlags::EVENT_UNMAP) .create() .context("failed to create user fault descriptor")?; // Register the linear memory pool with the userfault fd let start = instances.memories.mapping.as_ptr(); let len = instances.memories.mapping.len(); let thread = if !start.is_null() && len > 0 { let ioctls = uffd .register(start as _, len) .context("failed to register user fault range")?; if !ioctls.contains(IoctlFlags::WAKE | IoctlFlags::COPY | IoctlFlags::ZEROPAGE) { bail!( "required user fault ioctls not supported by the kernel; found: {:?}", ioctls, ); } log::trace!( "user fault handling enabled on linear memory pool at {:p} with size {}", start, len ); let locator = FaultLocator::new(&instances); Some( thread::Builder::new() .name("page fault handler".into()) .spawn(move || fault_handler_thread(uffd, locator)) .context("failed to spawn page fault handler thread")?, ) } else { log::trace!("user fault handling disabled as there is no linear memory pool"); None }; Ok(Self { thread }) } } impl Drop for PageFaultHandler { fn drop(&mut self) { // The handler thread should terminate once all monitored regions of memory are unmapped. // The pooling instance allocator ensures that the regions are unmapped prior to dropping // the page fault handler. if let Some(thread) = self.thread.take() { thread .join() .expect("failed to join page fault handler thread") .expect("fault handler thread failed"); } } } #[cfg(test)] mod test { use super::*; use crate::{ Imports, InstanceAllocationRequest, InstanceLimits, ModuleLimits, PoolingAllocationStrategy, VMSharedSignatureIndex, }; use std::sync::Arc; use wasmtime_environ::{Memory, MemoryPlan, MemoryStyle, Module, PrimaryMap, Tunables}; #[cfg(target_pointer_width = "64")] #[test] fn test_address_locator() { let module_limits = ModuleLimits { imported_functions: 0, imported_tables: 0, imported_memories: 0, imported_globals: 0, types: 0, functions: 0, tables: 0, memories: 2, globals: 0, table_elements: 0, memory_pages: 2, }; let instance_limits = InstanceLimits { count: 3 }; let tunables = Tunables { static_memory_bound: 10, static_memory_offset_guard_size: 0, guard_before_linear_memory: false, ..Tunables::default() }; let instances = InstancePool::new(&module_limits, &instance_limits, &tunables) .expect("should allocate"); let locator = FaultLocator::new(&instances); assert_eq!(locator.instances_start, instances.mapping.as_ptr() as usize); assert_eq!(locator.instance_size, 4096); assert_eq!(locator.max_instances, 3); assert_eq!( locator.memories_start, instances.memories.mapping.as_ptr() as usize ); assert_eq!( locator.memories_end, locator.memories_start + instances.memories.mapping.len() ); assert_eq!(locator.memory_size, WASM_PAGE_SIZE * 10); assert_eq!(locator.max_memories, 2); unsafe { assert!(locator.locate(0).is_none()); assert!(locator.locate(locator.memories_end).is_none()); let mut module = Module::new(); for _ in 0..module_limits.memories { module.memory_plans.push(MemoryPlan { memory: Memory { minimum: 2, maximum: Some(2), shared: false, memory64: false, }, style: MemoryStyle::Static { bound: 1 }, offset_guard_size: 0, pre_guard_size: 0, }); } module_limits.validate(&module).expect("should validate"); let mut handles = Vec::new(); let module = Arc::new(module); let functions = &PrimaryMap::new(); // Allocate the maximum number of instances with the maximum number of memories for _ in 0..instances.max_instances { handles.push( instances .allocate( PoolingAllocationStrategy::Random, InstanceAllocationRequest { module: module.clone(), image_base: 0, functions, imports: Imports { functions: &[], tables: &[], memories: &[], globals: &[], }, shared_signatures: VMSharedSignatureIndex::default().into(), host_state: Box::new(()), store: None, wasm_data: &[], }, ) .expect("instance should allocate"), ); } // Validate memory locations for instance_index in 0..instances.max_instances { for memory_index in 0..instances.memories.max_memories { let memory_start = locator.memories_start + (instance_index * locator.memory_size * locator.max_memories) + (memory_index * locator.memory_size); // Test for access to first page match locator.locate(memory_start + 10000) { Some(FaultLocation::MemoryPage { page_addr, len, instance: _, memory_index: mem_index, page_index, }) => { assert_eq!(page_addr, memory_start as _); assert_eq!(len, WASM_PAGE_SIZE); assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index)); assert_eq!(page_index, Some(0)); } _ => panic!("expected a memory page location"), } // Test for access to second page match locator.locate(memory_start + 1024 + WASM_PAGE_SIZE) { Some(FaultLocation::MemoryPage { page_addr, len, instance: _, memory_index: mem_index, page_index, }) => { assert_eq!(page_addr, (memory_start + WASM_PAGE_SIZE) as _); assert_eq!(len, WASM_PAGE_SIZE); assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index)); assert_eq!(page_index, Some(1)); } _ => panic!("expected a memory page location"), } // Test for guard page match locator.locate(memory_start + 10 + 9 * WASM_PAGE_SIZE) { Some(FaultLocation::MemoryPage { page_addr, len, instance: _, memory_index: mem_index, page_index, }) => { assert_eq!(page_addr, (memory_start + (9 * WASM_PAGE_SIZE)) as _); assert_eq!(len, WASM_PAGE_SIZE); assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index)); assert_eq!(page_index, None); } _ => panic!("expected a memory page location"), } } } for handle in handles.drain(..) { instances.deallocate(&handle); } } } }