//! Legalization of heaps. //! //! This module exports the `expand_heap_addr` function which transforms a `heap_addr` //! instruction into code that depends on the kind of heap referenced. use cursor::{Cursor, FuncCursor}; use flowgraph::ControlFlowGraph; use ir::condcodes::IntCC; use ir::{self, InstBuilder}; use isa::TargetIsa; /// Expand a `heap_addr` instruction according to the definition of the heap. pub fn expand_heap_addr( inst: ir::Inst, func: &mut ir::Function, cfg: &mut ControlFlowGraph, _isa: &TargetIsa, ) { // Unpack the instruction. let (heap, offset, access_size) = match func.dfg[inst] { ir::InstructionData::HeapAddr { opcode, heap, arg, imm, } => { debug_assert_eq!(opcode, ir::Opcode::HeapAddr); (heap, arg, imm.into()) } _ => panic!("Wanted heap_addr: {}", func.dfg.display_inst(inst, None)), }; match func.heaps[heap].style { ir::HeapStyle::Dynamic { bound_gv } => { dynamic_addr(inst, heap, offset, access_size, bound_gv, func) } ir::HeapStyle::Static { bound } => { static_addr(inst, heap, offset, access_size, bound.into(), func, cfg) } } } /// Expand a `heap_addr` for a dynamic heap. fn dynamic_addr( inst: ir::Inst, heap: ir::Heap, offset: ir::Value, access_size: u32, bound_gv: ir::GlobalValue, func: &mut ir::Function, ) { let access_size = i64::from(access_size); let offset_ty = func.dfg.value_type(offset); let addr_ty = func.dfg.value_type(func.dfg.first_result(inst)); let min_size = func.heaps[heap].min_size.into(); let mut pos = FuncCursor::new(func).at_inst(inst); pos.use_srcloc(inst); // Start with the bounds check. Trap if `offset + access_size > bound`. let bound = pos.ins().global_value(addr_ty, bound_gv); let oob; if access_size == 1 { // `offset > bound - 1` is the same as `offset >= bound`. oob = pos .ins() .icmp(IntCC::UnsignedGreaterThanOrEqual, offset, bound); } else if access_size <= min_size { // We know that bound >= min_size, so here we can compare `offset > bound - access_size` // without wrapping. let adj_bound = pos.ins().iadd_imm(bound, -access_size); oob = pos .ins() .icmp(IntCC::UnsignedGreaterThan, offset, adj_bound); } else { // We need an overflow check for the adjusted offset. let access_size_val = pos.ins().iconst(offset_ty, access_size); let (adj_offset, overflow) = pos.ins().iadd_cout(offset, access_size_val); pos.ins().trapnz(overflow, ir::TrapCode::HeapOutOfBounds); oob = pos .ins() .icmp(IntCC::UnsignedGreaterThan, adj_offset, bound); } pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds); compute_addr(inst, heap, addr_ty, offset, offset_ty, pos.func); } /// Expand a `heap_addr` for a static heap. fn static_addr( inst: ir::Inst, heap: ir::Heap, offset: ir::Value, access_size: u32, bound: i64, func: &mut ir::Function, cfg: &mut ControlFlowGraph, ) { let access_size = i64::from(access_size); let offset_ty = func.dfg.value_type(offset); let addr_ty = func.dfg.value_type(func.dfg.first_result(inst)); let mut pos = FuncCursor::new(func).at_inst(inst); pos.use_srcloc(inst); // Start with the bounds check. Trap if `offset + access_size > bound`. if access_size > bound { // This will simply always trap since `offset >= 0`. pos.ins().trap(ir::TrapCode::HeapOutOfBounds); pos.func.dfg.replace(inst).iconst(addr_ty, 0); // Split Ebb, as the trap is a terminator instruction. let curr_ebb = pos.current_ebb().expect("Cursor is not in an ebb"); let new_ebb = pos.func.dfg.make_ebb(); pos.insert_ebb(new_ebb); cfg.recompute_ebb(pos.func, curr_ebb); cfg.recompute_ebb(pos.func, new_ebb); return; } // Check `offset > limit` which is now known non-negative. let limit = bound - access_size; // We may be able to omit the check entirely for 32-bit offsets if the heap bound is 4 GB or // more. if offset_ty != ir::types::I32 || limit < 0xffff_ffff { let oob = if limit & 1 == 1 { // Prefer testing `offset >= limit - 1` when limit is odd because an even number is // likely to be a convenient constant on ARM and other RISC architectures. pos.ins() .icmp_imm(IntCC::UnsignedGreaterThanOrEqual, offset, limit - 1) } else { pos.ins() .icmp_imm(IntCC::UnsignedGreaterThan, offset, limit) }; pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds); } compute_addr(inst, heap, addr_ty, offset, offset_ty, pos.func); } /// Emit code for the base address computation of a `heap_addr` instruction. fn compute_addr( inst: ir::Inst, heap: ir::Heap, addr_ty: ir::Type, mut offset: ir::Value, offset_ty: ir::Type, func: &mut ir::Function, ) { let mut pos = FuncCursor::new(func).at_inst(inst); pos.use_srcloc(inst); // Convert `offset` to `addr_ty`. if offset_ty != addr_ty { offset = pos.ins().uextend(addr_ty, offset); } // Add the heap base address base let base_gv = pos.func.heaps[heap].base; let base = pos.ins().global_value(addr_ty, base_gv); pos.func.dfg.replace(inst).iadd(base, offset); }