use crate::spectest::instantiate_spectest; use anyhow::{anyhow, bail, Context as _, Result}; use std::collections::HashMap; use std::path::Path; use std::str; use wasmtime::*; /// Translate from a `script::Value` to a `RuntimeValue`. fn runtime_value(v: &wast::Expression<'_>) -> Result { use wast::Instruction::*; if v.instrs.len() != 1 { bail!("too many instructions in {:?}", v); } Ok(match &v.instrs[0] { I32Const(x) => Val::I32(*x), I64Const(x) => Val::I64(*x), F32Const(x) => Val::F32(x.bits), F64Const(x) => Val::F64(x.bits), V128Const(x) => Val::V128(u128::from_le_bytes(x.to_le_bytes())), other => bail!("couldn't convert {:?} to a runtime value", other), }) } /// The wast test script language allows modules to be defined and actions /// to be performed on them. pub struct WastContext { /// Wast files have a concept of a "current" module, which is the most /// recently defined. current: Option, instances: HashMap, store: Store, spectest: Option>, } enum Outcome> { Ok(T), Trap(Trap), } impl Outcome { fn into_result(self) -> Result { match self { Outcome::Ok(t) => Ok(t), Outcome::Trap(t) => Err(t), } } } impl WastContext { /// Construct a new instance of `WastContext`. pub fn new(store: Store) -> Self { Self { current: None, store, spectest: None, instances: HashMap::new(), } } fn get_instance(&self, instance_name: Option<&str>) -> Result { match instance_name { Some(name) => self .instances .get(name) .cloned() .ok_or_else(|| anyhow!("failed to find instance named `{}`", name)), None => self .current .clone() .ok_or_else(|| anyhow!("no previous instance found")), } } fn instantiate(&self, module: &[u8]) -> Result> { let module = Module::new(&self.store, module)?; let mut imports = Vec::new(); for import in module.imports() { if import.module() == "spectest" { let spectest = self .spectest .as_ref() .ok_or_else(|| anyhow!("spectest module isn't instantiated"))?; let export = spectest .get(import.name()) .ok_or_else(|| anyhow!("unknown import `spectest::{}`", import.name()))?; imports.push(export.clone()); continue; } let instance = self .instances .get(import.module()) .ok_or_else(|| anyhow!("no module named `{}`", import.module()))?; let export = instance .find_export_by_name(import.name()) .ok_or_else(|| anyhow!("unknown import `{}::{}`", import.name(), import.module()))? .clone(); imports.push(export); } let instance = match Instance::new(&module, &imports) { Ok(i) => i, Err(e) => return e.downcast::().map(Outcome::Trap), }; Ok(Outcome::Ok(instance)) } /// Register "spectest" which is used by the spec testsuite. pub fn register_spectest(&mut self) -> Result<()> { self.spectest = Some(instantiate_spectest(&self.store)); Ok(()) } /// Perform the action portion of a command. fn perform_execute(&mut self, exec: wast::WastExecute<'_>) -> Result { match exec { wast::WastExecute::Invoke(invoke) => self.perform_invoke(invoke), wast::WastExecute::Module(mut module) => { let binary = module.encode()?; let result = self.instantiate(&binary)?; Ok(match result { Outcome::Ok(_) => Outcome::Ok(Vec::new()), Outcome::Trap(e) => Outcome::Trap(e), }) } wast::WastExecute::Get { module, global } => self.get(module.map(|s| s.name()), global), } } fn perform_invoke(&mut self, exec: wast::WastInvoke<'_>) -> Result { let values = exec .args .iter() .map(runtime_value) .collect::>>()?; self.invoke(exec.module.map(|i| i.name()), exec.name, &values) } /// Define a module and register it. fn module(&mut self, instance_name: Option<&str>, module: &[u8]) -> Result<()> { let instance = match self.instantiate(module)? { Outcome::Ok(i) => i, Outcome::Trap(e) => bail!("instantiation failed with: {}", e.message()), }; if let Some(name) = instance_name { self.instances.insert(name.to_string(), instance.clone()); } self.current = Some(instance); Ok(()) } /// Register an instance to make it available for performing actions. fn register(&mut self, name: Option<&str>, as_name: &str) -> Result<()> { let instance = self.get_instance(name)?.clone(); self.instances.insert(as_name.to_string(), instance); Ok(()) } /// Invoke an exported function from an instance. fn invoke( &mut self, instance_name: Option<&str>, field: &str, args: &[Val], ) -> Result { let instance = self.get_instance(instance_name.as_ref().map(|x| &**x))?; let export = instance .find_export_by_name(field) .ok_or_else(|| anyhow!("no global named `{}`", field))?; let func = match export { Extern::Func(f) => f, _ => bail!("export of `{}` wasn't a global", field), }; Ok(match func.call(args) { Ok(result) => Outcome::Ok(result.into()), Err(e) => Outcome::Trap(e), }) } /// Get the value of an exported global from an instance. fn get(&mut self, instance_name: Option<&str>, field: &str) -> Result { let instance = self.get_instance(instance_name.as_ref().map(|x| &**x))?; let export = instance .find_export_by_name(field) .ok_or_else(|| anyhow!("no global named `{}`", field))?; let global = match export { Extern::Global(g) => g, _ => bail!("export of `{}` wasn't a global", field), }; Ok(Outcome::Ok(vec![global.get()])) } fn assert_return(&self, result: Outcome, results: &[wast::AssertExpression]) -> Result<()> { let values = result.into_result()?; for (v, e) in values.iter().zip(results) { if val_matches(v, e)? { continue; } bail!("expected {:?}, got {:?}", e, v) } Ok(()) } fn assert_trap(&self, result: Outcome, message: &str) -> Result<()> { let trap = match result { Outcome::Ok(values) => bail!("expected trap, got {:?}", values), Outcome::Trap(t) => t, }; if trap.message().contains(message) { return Ok(()); } if cfg!(feature = "lightbeam") { println!("TODO: Check the assert_trap message: {}", message); return Ok(()); } bail!("expected {}, got {}", message, trap.message()) } /// Run a wast script from a byte buffer. pub fn run_buffer(&mut self, filename: &str, wast: &[u8]) -> Result<()> { let wast = str::from_utf8(wast)?; let adjust_wast = |mut err: wast::Error| { err.set_path(filename.as_ref()); err.set_text(wast); err }; let buf = wast::parser::ParseBuffer::new(wast).map_err(adjust_wast)?; let ast = wast::parser::parse::(&buf).map_err(adjust_wast)?; for directive in ast.directives { let sp = directive.span(); self.run_directive(directive).with_context(|| { let (line, col) = sp.linecol_in(wast); format!("failed directive on {}:{}:{}", filename, line + 1, col) })?; } Ok(()) } fn run_directive(&mut self, directive: wast::WastDirective) -> Result<()> { use wast::WastDirective::*; match directive { Module(mut module) => { let binary = module.encode()?; self.module(module.name.map(|s| s.name()), &binary)?; } Register { span: _, name, module, } => { self.register(module.map(|s| s.name()), name)?; } Invoke(i) => { self.perform_invoke(i)?; } AssertReturn { span: _, exec, results, } => { let result = self.perform_execute(exec)?; self.assert_return(result, &results)?; } AssertTrap { span: _, exec, message, } => { let result = self.perform_execute(exec)?; self.assert_trap(result, message)?; } AssertExhaustion { span: _, call, message, } => { let result = self.perform_invoke(call)?; self.assert_trap(result, message)?; } AssertInvalid { span: _, mut module, message, } => { let bytes = module.encode()?; let err = match self.module(None, &bytes) { Ok(()) => bail!("expected module to fail to build"), Err(e) => e, }; let error_message = format!("{:?}", err); if !error_message.contains(&message) { // TODO: change to bail! println!( "assert_invalid: expected {}, got {}", message, error_message ) } } AssertMalformed { span: _, module, message, } => { let mut module = match module { wast::QuoteModule::Module(m) => m, // this is a `*.wat` parser test which we're not // interested in wast::QuoteModule::Quote(_) => return Ok(()), }; let bytes = module.encode()?; let err = match self.module(None, &bytes) { Ok(()) => bail!("expected module to fail to instantiate"), Err(e) => e, }; let error_message = format!("{:?}", err); if !error_message.contains(&message) { // TODO: change to bail! println!( "assert_malformed: expected {}, got {}", message, error_message ) } } AssertUnlinkable { span: _, mut module, message, } => { let bytes = module.encode()?; let err = match self.module(None, &bytes) { Ok(()) => bail!("expected module to fail to link"), Err(e) => e, }; let error_message = format!("{:?}", err); if !error_message.contains(&message) { bail!( "assert_unlinkable: expected {}, got {}", message, error_message ) } } AssertReturnFunc { .. } => bail!("need to implement assert_return_func"), } Ok(()) } /// Run a wast script from a file. pub fn run_file(&mut self, path: &Path) -> Result<()> { let bytes = std::fs::read(path).with_context(|| format!("failed to read `{}`", path.display()))?; self.run_buffer(path.to_str().unwrap(), &bytes) } } fn extract_lane_as_i8(bytes: u128, lane: usize) -> i8 { (bytes >> (lane * 8)) as i8 } fn extract_lane_as_i16(bytes: u128, lane: usize) -> i16 { (bytes >> (lane * 16)) as i16 } fn extract_lane_as_i32(bytes: u128, lane: usize) -> i32 { (bytes >> (lane * 32)) as i32 } fn extract_lane_as_i64(bytes: u128, lane: usize) -> i64 { (bytes >> (lane * 64)) as i64 } fn is_canonical_f32_nan(bits: u32) -> bool { (bits & 0x7fff_ffff) == 0x7fc0_0000 } fn is_canonical_f64_nan(bits: u64) -> bool { (bits & 0x7fff_ffff_ffff_ffff) == 0x7ff8_0000_0000_0000 } fn is_arithmetic_f32_nan(bits: u32) -> bool { const AF32_NAN: u32 = 0x0040_0000; (bits & AF32_NAN) == AF32_NAN } fn is_arithmetic_f64_nan(bits: u64) -> bool { const AF64_NAN: u64 = 0x0008_0000_0000_0000; (bits & AF64_NAN) == AF64_NAN } fn val_matches(actual: &Val, expected: &wast::AssertExpression) -> Result { Ok(match (actual, expected) { (Val::I32(a), wast::AssertExpression::I32(b)) => a == b, (Val::I64(a), wast::AssertExpression::I64(b)) => a == b, // Note that these float comparisons are comparing bits, not float // values, so we're testing for bit-for-bit equivalence (Val::F32(a), wast::AssertExpression::F32(b)) => f32_matches(*a, b), (Val::F64(a), wast::AssertExpression::F64(b)) => f64_matches(*a, b), (Val::V128(a), wast::AssertExpression::V128(b)) => v128_matches(*a, b), _ => bail!( "don't know how to compare {:?} and {:?} yet", actual, expected ), }) } fn f32_matches(actual: u32, expected: &wast::NanPattern) -> bool { match expected { wast::NanPattern::CanonicalNan => is_canonical_f32_nan(actual), wast::NanPattern::ArithmeticNan => is_arithmetic_f32_nan(actual), wast::NanPattern::Value(expected_value) => actual == expected_value.bits, } } fn f64_matches(actual: u64, expected: &wast::NanPattern) -> bool { match expected { wast::NanPattern::CanonicalNan => is_canonical_f64_nan(actual), wast::NanPattern::ArithmeticNan => is_arithmetic_f64_nan(actual), wast::NanPattern::Value(expected_value) => actual == expected_value.bits, } } fn v128_matches(actual: u128, expected: &wast::V128Pattern) -> bool { match expected { wast::V128Pattern::I8x16(b) => b .iter() .enumerate() .all(|(i, b)| *b == extract_lane_as_i8(actual, i)), wast::V128Pattern::I16x8(b) => b .iter() .enumerate() .all(|(i, b)| *b == extract_lane_as_i16(actual, i)), wast::V128Pattern::I32x4(b) => b .iter() .enumerate() .all(|(i, b)| *b == extract_lane_as_i32(actual, i)), wast::V128Pattern::I64x2(b) => b .iter() .enumerate() .all(|(i, b)| *b == extract_lane_as_i64(actual, i)), wast::V128Pattern::F32x4(b) => b.iter().enumerate().all(|(i, b)| { let a = extract_lane_as_i32(actual, i) as u32; f32_matches(a, b) }), wast::V128Pattern::F64x2(b) => b.iter().enumerate().all(|(i, b)| { let a = extract_lane_as_i64(actual, i) as u64; f64_matches(a, b) }), } }