//! A Dominator Tree represented as mappings of Blocks to their immediate dominator. use crate::entity::SecondaryMap; use crate::flowgraph::{BlockPredecessor, ControlFlowGraph}; use crate::inst_predicates; use crate::ir::{Block, ExpandedProgramPoint, Function, Inst, Layout, ProgramOrder, Value}; use crate::packed_option::PackedOption; use crate::timing; use alloc::vec::Vec; use core::cmp; use core::cmp::Ordering; use core::mem; /// RPO numbers are not first assigned in a contiguous way but as multiples of STRIDE, to leave /// room for modifications of the dominator tree. const STRIDE: u32 = 4; /// Special RPO numbers used during `compute_postorder`. const DONE: u32 = 1; const SEEN: u32 = 2; /// Dominator tree node. We keep one of these per block. #[derive(Clone, Default)] struct DomNode { /// Number of this node in a reverse post-order traversal of the CFG, starting from 1. /// This number is monotonic in the reverse postorder but not contiguous, since we leave /// holes for later localized modifications of the dominator tree. /// Unreachable nodes get number 0, all others are positive. rpo_number: u32, /// The immediate dominator of this block, represented as the branch or jump instruction at the /// end of the dominating basic block. /// /// This is `None` for unreachable blocks and the entry block which doesn't have an immediate /// dominator. idom: PackedOption, } /// The dominator tree for a single function. pub struct DominatorTree { nodes: SecondaryMap, /// CFG post-order of all reachable blocks. postorder: Vec, /// Scratch memory used by `compute_postorder()`. stack: Vec, valid: bool, } /// Methods for querying the dominator tree. impl DominatorTree { /// Is `block` reachable from the entry block? pub fn is_reachable(&self, block: Block) -> bool { self.nodes[block].rpo_number != 0 } /// Get the CFG post-order of blocks that was used to compute the dominator tree. /// /// Note that this post-order is not updated automatically when the CFG is modified. It is /// computed from scratch and cached by `compute()`. pub fn cfg_postorder(&self) -> &[Block] { debug_assert!(self.is_valid()); &self.postorder } /// Returns the immediate dominator of `block`. /// /// The immediate dominator of a basic block is a basic block which we represent by /// the branch or jump instruction at the end of the basic block. This does not have to be the /// terminator of its block. /// /// A branch or jump is said to *dominate* `block` if all control flow paths from the function /// entry to `block` must go through the branch. /// /// The *immediate dominator* is the dominator that is closest to `block`. All other dominators /// also dominate the immediate dominator. /// /// This returns `None` if `block` is not reachable from the entry block, or if it is the entry block /// which has no dominators. pub fn idom(&self, block: Block) -> Option { self.nodes[block].idom.into() } /// Compare two blocks relative to the reverse post-order. fn rpo_cmp_block(&self, a: Block, b: Block) -> Ordering { self.nodes[a].rpo_number.cmp(&self.nodes[b].rpo_number) } /// Compare two program points relative to a reverse post-order traversal of the control-flow /// graph. /// /// Return `Ordering::Less` if `a` comes before `b` in the RPO. /// /// If `a` and `b` belong to the same block, compare their relative position in the block. pub fn rpo_cmp(&self, a: A, b: B, layout: &Layout) -> Ordering where A: Into, B: Into, { let a = a.into(); let b = b.into(); self.rpo_cmp_block(layout.pp_block(a), layout.pp_block(b)) .then(layout.cmp(a, b)) } /// Returns `true` if `a` dominates `b`. /// /// This means that every control-flow path from the function entry to `b` must go through `a`. /// /// Dominance is ill defined for unreachable blocks. This function can always determine /// dominance for instructions in the same block, but otherwise returns `false` if either block /// is unreachable. /// /// An instruction is considered to dominate itself. pub fn dominates(&self, a: A, b: B, layout: &Layout) -> bool where A: Into, B: Into, { let a = a.into(); let b = b.into(); match a { ExpandedProgramPoint::Block(block_a) => { a == b || self.last_dominator(block_a, b, layout).is_some() } ExpandedProgramPoint::Inst(inst_a) => { let block_a = layout .inst_block(inst_a) .expect("Instruction not in layout."); match self.last_dominator(block_a, b, layout) { Some(last) => layout.cmp(inst_a, last) != Ordering::Greater, None => false, } } } } /// Find the last instruction in `a` that dominates `b`. /// If no instructions in `a` dominate `b`, return `None`. pub fn last_dominator(&self, a: Block, b: B, layout: &Layout) -> Option where B: Into, { let (mut block_b, mut inst_b) = match b.into() { ExpandedProgramPoint::Block(block) => (block, None), ExpandedProgramPoint::Inst(inst) => ( layout.inst_block(inst).expect("Instruction not in layout."), Some(inst), ), }; let rpo_a = self.nodes[a].rpo_number; // Run a finger up the dominator tree from b until we see a. // Do nothing if b is unreachable. while rpo_a < self.nodes[block_b].rpo_number { let idom = match self.idom(block_b) { Some(idom) => idom, None => return None, // a is unreachable, so we climbed past the entry }; block_b = layout.inst_block(idom).expect("Dominator got removed."); inst_b = Some(idom); } if a == block_b { inst_b } else { None } } /// Compute the common dominator of two basic blocks. /// /// Both basic blocks are assumed to be reachable. pub fn common_dominator( &self, mut a: BlockPredecessor, mut b: BlockPredecessor, layout: &Layout, ) -> BlockPredecessor { loop { match self.rpo_cmp_block(a.block, b.block) { Ordering::Less => { // `a` comes before `b` in the RPO. Move `b` up. let idom = self.nodes[b.block].idom.expect("Unreachable basic block?"); b = BlockPredecessor::new( layout.inst_block(idom).expect("Dangling idom instruction"), idom, ); } Ordering::Greater => { // `b` comes before `a` in the RPO. Move `a` up. let idom = self.nodes[a.block].idom.expect("Unreachable basic block?"); a = BlockPredecessor::new( layout.inst_block(idom).expect("Dangling idom instruction"), idom, ); } Ordering::Equal => break, } } debug_assert_eq!( a.block, b.block, "Unreachable block passed to common_dominator?" ); // We're in the same block. The common dominator is the earlier instruction. if layout.cmp(a.inst, b.inst) == Ordering::Less { a } else { b } } } impl DominatorTree { /// Allocate a new blank dominator tree. Use `compute` to compute the dominator tree for a /// function. pub fn new() -> Self { Self { nodes: SecondaryMap::new(), postorder: Vec::new(), stack: Vec::new(), valid: false, } } /// Allocate and compute a dominator tree. pub fn with_function(func: &Function, cfg: &ControlFlowGraph) -> Self { let block_capacity = func.layout.block_capacity(); let mut domtree = Self { nodes: SecondaryMap::with_capacity(block_capacity), postorder: Vec::with_capacity(block_capacity), stack: Vec::new(), valid: false, }; domtree.compute(func, cfg); domtree } /// Reset and compute a CFG post-order and dominator tree. pub fn compute(&mut self, func: &Function, cfg: &ControlFlowGraph) { let _tt = timing::domtree(); debug_assert!(cfg.is_valid()); self.compute_postorder(func); self.compute_domtree(func, cfg); self.valid = true; } /// Clear the data structures used to represent the dominator tree. This will leave the tree in /// a state where `is_valid()` returns false. pub fn clear(&mut self) { self.nodes.clear(); self.postorder.clear(); debug_assert!(self.stack.is_empty()); self.valid = false; } /// Check if the dominator tree is in a valid state. /// /// Note that this doesn't perform any kind of validity checks. It simply checks if the /// `compute()` method has been called since the last `clear()`. It does not check that the /// dominator tree is consistent with the CFG. pub fn is_valid(&self) -> bool { self.valid } /// Reset all internal data structures and compute a post-order of the control flow graph. /// /// This leaves `rpo_number == 1` for all reachable blocks, 0 for unreachable ones. fn compute_postorder(&mut self, func: &Function) { self.clear(); self.nodes.resize(func.dfg.num_blocks()); // This algorithm is a depth first traversal (DFT) of the control flow graph, computing a // post-order of the blocks that are reachable form the entry block. A DFT post-order is not // unique. The specific order we get is controlled by two factors: // // 1. The order each node's children are visited, and // 2. The method used for pruning graph edges to get a tree. // // There are two ways of viewing the CFG as a graph: // // 1. Each block is a node, with outgoing edges for all the branches in the block. // 2. Each basic block is a node, with outgoing edges for the single branch at the end of // the BB. (A block is a linear sequence of basic blocks). // // The first graph is a contraction of the second one. We want to compute a block post-order // that is compatible both graph interpretations. That is, if you compute a BB post-order // and then remove those BBs that do not correspond to block headers, you get a post-order of // the block graph. // // Node child order: // // In the BB graph, we always go down the fall-through path first and follow the branch // destination second. // // In the block graph, this is equivalent to visiting block successors in a bottom-up // order, starting from the destination of the block's terminating jump, ending at the // destination of the first branch in the block. // // Edge pruning: // // In the BB graph, we keep an edge to a block the first time we visit the *source* side // of the edge. Any subsequent edges to the same block are pruned. // // The equivalent tree is reached in the block graph by keeping the first edge to a block // in a top-down traversal of the successors. (And then visiting edges in a bottom-up // order). // // This pruning method makes it possible to compute the DFT without storing lots of // information about the progress through a block. // During this algorithm only, use `rpo_number` to hold the following state: // // 0: block has not yet been reached in the pre-order. // SEEN: block has been pushed on the stack but successors not yet pushed. // DONE: Successors pushed. match func.layout.entry_block() { Some(block) => { self.stack.push(block); self.nodes[block].rpo_number = SEEN; } None => return, } while let Some(block) = self.stack.pop() { match self.nodes[block].rpo_number { SEEN => { // This is the first time we pop the block, so we need to scan its successors and // then revisit it. self.nodes[block].rpo_number = DONE; self.stack.push(block); self.push_successors(func, block); } DONE => { // This is the second time we pop the block, so all successors have been // processed. self.postorder.push(block); } _ => unreachable!(), } } } /// Push `block` successors onto `self.stack`, filtering out those that have already been seen. /// /// The successors are pushed in program order which is important to get a split-invariant /// post-order. Split-invariant means that if a block is split in two, we get the same /// post-order except for the insertion of the new block header at the split point. fn push_successors(&mut self, func: &Function, block: Block) { inst_predicates::visit_block_succs(func, block, |_, succ, _| self.push_if_unseen(succ)) } /// Push `block` onto `self.stack` if it has not already been seen. fn push_if_unseen(&mut self, block: Block) { if self.nodes[block].rpo_number == 0 { self.nodes[block].rpo_number = SEEN; self.stack.push(block); } } /// Build a dominator tree from a control flow graph using Keith D. Cooper's /// "Simple, Fast Dominator Algorithm." fn compute_domtree(&mut self, func: &Function, cfg: &ControlFlowGraph) { // During this algorithm, `rpo_number` has the following values: // // 0: block is not reachable. // 1: block is reachable, but has not yet been visited during the first pass. This is set by // `compute_postorder`. // 2+: block is reachable and has an assigned RPO number. // We'll be iterating over a reverse post-order of the CFG, skipping the entry block. let (entry_block, postorder) = match self.postorder.as_slice().split_last() { Some((&eb, rest)) => (eb, rest), None => return, }; debug_assert_eq!(Some(entry_block), func.layout.entry_block()); // Do a first pass where we assign RPO numbers to all reachable nodes. self.nodes[entry_block].rpo_number = 2 * STRIDE; for (rpo_idx, &block) in postorder.iter().rev().enumerate() { // Update the current node and give it an RPO number. // The entry block got 2, the rest start at 3 by multiples of STRIDE to leave // room for future dominator tree modifications. // // Since `compute_idom` will only look at nodes with an assigned RPO number, the // function will never see an uninitialized predecessor. // // Due to the nature of the post-order traversal, every node we visit will have at // least one predecessor that has previously been visited during this RPO. self.nodes[block] = DomNode { idom: self.compute_idom(block, cfg, &func.layout).into(), rpo_number: (rpo_idx as u32 + 3) * STRIDE, } } // Now that we have RPO numbers for everything and initial immediate dominator estimates, // iterate until convergence. // // If the function is free of irreducible control flow, this will exit after one iteration. let mut changed = true; while changed { changed = false; for &block in postorder.iter().rev() { let idom = self.compute_idom(block, cfg, &func.layout).into(); if self.nodes[block].idom != idom { self.nodes[block].idom = idom; changed = true; } } } } // Compute the immediate dominator for `block` using the current `idom` states for the reachable // nodes. fn compute_idom(&self, block: Block, cfg: &ControlFlowGraph, layout: &Layout) -> Inst { // Get an iterator with just the reachable, already visited predecessors to `block`. // Note that during the first pass, `rpo_number` is 1 for reachable blocks that haven't // been visited yet, 0 for unreachable blocks. let mut reachable_preds = cfg .pred_iter(block) .filter(|&BlockPredecessor { block: pred, .. }| self.nodes[pred].rpo_number > 1); // The RPO must visit at least one predecessor before this node. let mut idom = reachable_preds .next() .expect("block node must have one reachable predecessor"); for pred in reachable_preds { idom = self.common_dominator(idom, pred, layout); } idom.inst } } /// Optional pre-order information that can be computed for a dominator tree. /// /// This data structure is computed from a `DominatorTree` and provides: /// /// - A forward traversable dominator tree through the `children()` iterator. /// - An ordering of blocks according to a dominator tree pre-order. /// - Constant time dominance checks at the block granularity. /// /// The information in this auxiliary data structure is not easy to update when the control flow /// graph changes, which is why it is kept separate. pub struct DominatorTreePreorder { nodes: SecondaryMap, // Scratch memory used by `compute_postorder()`. stack: Vec, } #[derive(Default, Clone)] struct ExtraNode { /// First child node in the domtree. child: PackedOption, /// Next sibling node in the domtree. This linked list is ordered according to the CFG RPO. sibling: PackedOption, /// Sequence number for this node in a pre-order traversal of the dominator tree. /// Unreachable blocks have number 0, the entry block is 1. pre_number: u32, /// Maximum `pre_number` for the sub-tree of the dominator tree that is rooted at this node. /// This is always >= `pre_number`. pre_max: u32, } /// Creating and computing the dominator tree pre-order. impl DominatorTreePreorder { /// Create a new blank `DominatorTreePreorder`. pub fn new() -> Self { Self { nodes: SecondaryMap::new(), stack: Vec::new(), } } /// Recompute this data structure to match `domtree`. pub fn compute(&mut self, domtree: &DominatorTree, layout: &Layout) { self.nodes.clear(); debug_assert_eq!(self.stack.len(), 0); // Step 1: Populate the child and sibling links. // // By following the CFG post-order and pushing to the front of the lists, we make sure that // sibling lists are ordered according to the CFG reverse post-order. for &block in domtree.cfg_postorder() { if let Some(idom_inst) = domtree.idom(block) { let idom = layout.pp_block(idom_inst); let sib = mem::replace(&mut self.nodes[idom].child, block.into()); self.nodes[block].sibling = sib; } else { // The only block without an immediate dominator is the entry. self.stack.push(block); } } // Step 2. Assign pre-order numbers from a DFS of the dominator tree. debug_assert!(self.stack.len() <= 1); let mut n = 0; while let Some(block) = self.stack.pop() { n += 1; let node = &mut self.nodes[block]; node.pre_number = n; node.pre_max = n; if let Some(n) = node.sibling.expand() { self.stack.push(n); } if let Some(n) = node.child.expand() { self.stack.push(n); } } // Step 3. Propagate the `pre_max` numbers up the tree. // The CFG post-order is topologically ordered w.r.t. dominance so a node comes after all // its dominator tree children. for &block in domtree.cfg_postorder() { if let Some(idom_inst) = domtree.idom(block) { let idom = layout.pp_block(idom_inst); let pre_max = cmp::max(self.nodes[block].pre_max, self.nodes[idom].pre_max); self.nodes[idom].pre_max = pre_max; } } } } /// An iterator that enumerates the direct children of a block in the dominator tree. pub struct ChildIter<'a> { dtpo: &'a DominatorTreePreorder, next: PackedOption, } impl<'a> Iterator for ChildIter<'a> { type Item = Block; fn next(&mut self) -> Option { let n = self.next.expand(); if let Some(block) = n { self.next = self.dtpo.nodes[block].sibling; } n } } /// Query interface for the dominator tree pre-order. impl DominatorTreePreorder { /// Get an iterator over the direct children of `block` in the dominator tree. /// /// These are the block's whose immediate dominator is an instruction in `block`, ordered according /// to the CFG reverse post-order. pub fn children(&self, block: Block) -> ChildIter { ChildIter { dtpo: self, next: self.nodes[block].child, } } /// Fast, constant time dominance check with block granularity. /// /// This computes the same result as `domtree.dominates(a, b)`, but in guaranteed fast constant /// time. This is less general than the `DominatorTree` method because it only works with block /// program points. /// /// A block is considered to dominate itself. pub fn dominates(&self, a: Block, b: Block) -> bool { let na = &self.nodes[a]; let nb = &self.nodes[b]; na.pre_number <= nb.pre_number && na.pre_max >= nb.pre_max } /// Compare two blocks according to the dominator pre-order. pub fn pre_cmp_block(&self, a: Block, b: Block) -> Ordering { self.nodes[a].pre_number.cmp(&self.nodes[b].pre_number) } /// Compare two program points according to the dominator tree pre-order. /// /// This ordering of program points have the property that given a program point, pp, all the /// program points dominated by pp follow immediately and contiguously after pp in the order. pub fn pre_cmp(&self, a: A, b: B, layout: &Layout) -> Ordering where A: Into, B: Into, { let a = a.into(); let b = b.into(); self.pre_cmp_block(layout.pp_block(a), layout.pp_block(b)) .then(layout.cmp(a, b)) } /// Compare two value defs according to the dominator tree pre-order. /// /// Two values defined at the same program point are compared according to their parameter or /// result order. /// /// This is a total ordering of the values in the function. pub fn pre_cmp_def(&self, a: Value, b: Value, func: &Function) -> Ordering { let da = func.dfg.value_def(a); let db = func.dfg.value_def(b); self.pre_cmp(da, db, &func.layout) .then_with(|| da.num().cmp(&db.num())) } } #[cfg(test)] mod tests { use super::*; use crate::cursor::{Cursor, FuncCursor}; use crate::flowgraph::ControlFlowGraph; use crate::ir::types::*; use crate::ir::{Function, InstBuilder, TrapCode}; #[test] fn empty() { let func = Function::new(); let cfg = ControlFlowGraph::with_function(&func); debug_assert!(cfg.is_valid()); let dtree = DominatorTree::with_function(&func, &cfg); assert_eq!(0, dtree.nodes.keys().count()); assert_eq!(dtree.cfg_postorder(), &[]); let mut dtpo = DominatorTreePreorder::new(); dtpo.compute(&dtree, &func.layout); } #[test] fn unreachable_node() { let mut func = Function::new(); let block0 = func.dfg.make_block(); let v0 = func.dfg.append_block_param(block0, I32); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); let trap_block = func.dfg.make_block(); let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.ins().brif(v0, block2, &[], trap_block, &[]); cur.insert_block(trap_block); cur.ins().trap(TrapCode::User(0)); cur.insert_block(block1); let v1 = cur.ins().iconst(I32, 1); let v2 = cur.ins().iadd(v0, v1); cur.ins().jump(block0, &[v2]); cur.insert_block(block2); cur.ins().return_(&[v0]); let cfg = ControlFlowGraph::with_function(cur.func); let dt = DominatorTree::with_function(cur.func, &cfg); // Fall-through-first, prune-at-source DFT: // // block0 { // brif block2 { // trap // block2 { // return // } block2 // } block0 assert_eq!(dt.cfg_postorder(), &[trap_block, block2, block0]); let v2_def = cur.func.dfg.value_def(v2).unwrap_inst(); assert!(!dt.dominates(v2_def, block0, &cur.func.layout)); assert!(!dt.dominates(block0, v2_def, &cur.func.layout)); let mut dtpo = DominatorTreePreorder::new(); dtpo.compute(&dt, &cur.func.layout); assert!(dtpo.dominates(block0, block0)); assert!(!dtpo.dominates(block0, block1)); assert!(dtpo.dominates(block0, block2)); assert!(!dtpo.dominates(block1, block0)); assert!(dtpo.dominates(block1, block1)); assert!(!dtpo.dominates(block1, block2)); assert!(!dtpo.dominates(block2, block0)); assert!(!dtpo.dominates(block2, block1)); assert!(dtpo.dominates(block2, block2)); } #[test] fn non_zero_entry_block() { let mut func = Function::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); let block3 = func.dfg.make_block(); let cond = func.dfg.append_block_param(block3, I32); let mut cur = FuncCursor::new(&mut func); cur.insert_block(block3); let jmp_block3_block1 = cur.ins().jump(block1, &[]); cur.insert_block(block1); let br_block1_block0_block2 = cur.ins().brif(cond, block0, &[], block2, &[]); cur.insert_block(block2); cur.ins().jump(block0, &[]); cur.insert_block(block0); let cfg = ControlFlowGraph::with_function(cur.func); let dt = DominatorTree::with_function(cur.func, &cfg); // Fall-through-first, prune-at-source DFT: // // block3 { // block3:jump block1 { // block1 { // block1:brif block0 { // block1:jump block2 { // block2 { // block2:jump block0 (seen) // } block2 // } block1:jump block2 // block0 { // } block0 // } block1:brif block0 // } block1 // } block3:jump block1 // } block3 assert_eq!(dt.cfg_postorder(), &[block2, block0, block1, block3]); assert_eq!(cur.func.layout.entry_block().unwrap(), block3); assert_eq!(dt.idom(block3), None); assert_eq!(dt.idom(block1).unwrap(), jmp_block3_block1); assert_eq!(dt.idom(block2).unwrap(), br_block1_block0_block2); assert_eq!(dt.idom(block0).unwrap(), br_block1_block0_block2); assert!(dt.dominates( br_block1_block0_block2, br_block1_block0_block2, &cur.func.layout )); assert!(!dt.dominates(br_block1_block0_block2, jmp_block3_block1, &cur.func.layout)); assert!(dt.dominates(jmp_block3_block1, br_block1_block0_block2, &cur.func.layout)); assert_eq!( dt.rpo_cmp(block3, block3, &cur.func.layout), Ordering::Equal ); assert_eq!(dt.rpo_cmp(block3, block1, &cur.func.layout), Ordering::Less); assert_eq!( dt.rpo_cmp(block3, jmp_block3_block1, &cur.func.layout), Ordering::Less ); assert_eq!( dt.rpo_cmp(jmp_block3_block1, br_block1_block0_block2, &cur.func.layout), Ordering::Less ); } #[test] fn backwards_layout() { let mut func = Function::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); let jmp02 = cur.ins().jump(block2, &[]); cur.insert_block(block1); let trap = cur.ins().trap(TrapCode::User(5)); cur.insert_block(block2); let jmp21 = cur.ins().jump(block1, &[]); let cfg = ControlFlowGraph::with_function(cur.func); let dt = DominatorTree::with_function(cur.func, &cfg); assert_eq!(cur.func.layout.entry_block(), Some(block0)); assert_eq!(dt.idom(block0), None); assert_eq!(dt.idom(block1), Some(jmp21)); assert_eq!(dt.idom(block2), Some(jmp02)); assert!(dt.dominates(block0, block0, &cur.func.layout)); assert!(dt.dominates(block0, jmp02, &cur.func.layout)); assert!(dt.dominates(block0, block1, &cur.func.layout)); assert!(dt.dominates(block0, trap, &cur.func.layout)); assert!(dt.dominates(block0, block2, &cur.func.layout)); assert!(dt.dominates(block0, jmp21, &cur.func.layout)); assert!(!dt.dominates(jmp02, block0, &cur.func.layout)); assert!(dt.dominates(jmp02, jmp02, &cur.func.layout)); assert!(dt.dominates(jmp02, block1, &cur.func.layout)); assert!(dt.dominates(jmp02, trap, &cur.func.layout)); assert!(dt.dominates(jmp02, block2, &cur.func.layout)); assert!(dt.dominates(jmp02, jmp21, &cur.func.layout)); assert!(!dt.dominates(block1, block0, &cur.func.layout)); assert!(!dt.dominates(block1, jmp02, &cur.func.layout)); assert!(dt.dominates(block1, block1, &cur.func.layout)); assert!(dt.dominates(block1, trap, &cur.func.layout)); assert!(!dt.dominates(block1, block2, &cur.func.layout)); assert!(!dt.dominates(block1, jmp21, &cur.func.layout)); assert!(!dt.dominates(trap, block0, &cur.func.layout)); assert!(!dt.dominates(trap, jmp02, &cur.func.layout)); assert!(!dt.dominates(trap, block1, &cur.func.layout)); assert!(dt.dominates(trap, trap, &cur.func.layout)); assert!(!dt.dominates(trap, block2, &cur.func.layout)); assert!(!dt.dominates(trap, jmp21, &cur.func.layout)); assert!(!dt.dominates(block2, block0, &cur.func.layout)); assert!(!dt.dominates(block2, jmp02, &cur.func.layout)); assert!(dt.dominates(block2, block1, &cur.func.layout)); assert!(dt.dominates(block2, trap, &cur.func.layout)); assert!(dt.dominates(block2, block2, &cur.func.layout)); assert!(dt.dominates(block2, jmp21, &cur.func.layout)); assert!(!dt.dominates(jmp21, block0, &cur.func.layout)); assert!(!dt.dominates(jmp21, jmp02, &cur.func.layout)); assert!(dt.dominates(jmp21, block1, &cur.func.layout)); assert!(dt.dominates(jmp21, trap, &cur.func.layout)); assert!(!dt.dominates(jmp21, block2, &cur.func.layout)); assert!(dt.dominates(jmp21, jmp21, &cur.func.layout)); } }