//! Shared settings module. //! //! This module defines data structures to access the settings defined in the meta language. //! //! Each settings group is translated to a `Flags` struct either in this module or in its //! ISA-specific `settings` module. The struct provides individual getter methods for all of the //! settings as well as computed predicate flags. //! //! The `Flags` struct is immutable once it has been created. A `Builder` instance is used to //! create it. //! //! # Example //! ``` //! use cranelift_codegen::settings::{self, Configurable}; //! //! let mut b = settings::builder(); //! b.set("opt_level", "fastest"); //! //! let f = settings::Flags::new(b); //! assert_eq!(f.opt_level(), settings::OptLevel::Fastest); //! ``` use crate::constant_hash::{probe, simple_hash}; use crate::isa::TargetIsa; use core::fmt; use core::str; use failure_derive::Fail; use std::boxed::Box; use std::string::{String, ToString}; /// A string-based configurator for settings groups. /// /// The `Configurable` protocol allows settings to be modified by name before a finished `Flags` /// struct is created. pub trait Configurable { /// Set the string value of any setting by name. /// /// This can set any type of setting whether it is numeric, boolean, or enumerated. fn set(&mut self, name: &str, value: &str) -> SetResult<()>; /// Enable a boolean setting or apply a preset. /// /// If the identified setting isn't a boolean or a preset, a `BadType` error is returned. fn enable(&mut self, name: &str) -> SetResult<()>; } /// Collect settings values based on a template. #[derive(Clone)] pub struct Builder { template: &'static detail::Template, bytes: Box<[u8]>, } impl Builder { /// Create a new builder with defaults and names from the given template. pub fn new(tmpl: &'static detail::Template) -> Self { Self { template: tmpl, bytes: tmpl.defaults.into(), } } /// Extract contents of builder once everything is configured. pub fn state_for(self, name: &str) -> Box<[u8]> { assert_eq!(name, self.template.name); self.bytes } /// Set the value of a single bit. fn set_bit(&mut self, offset: usize, bit: u8, value: bool) { let byte = &mut self.bytes[offset]; let mask = 1 << bit; if value { *byte |= mask; } else { *byte &= !mask; } } /// Apply a preset. The argument is a slice of (mask, value) bytes. fn apply_preset(&mut self, values: &[(u8, u8)]) { for (byte, &(mask, value)) in self.bytes.iter_mut().zip(values) { *byte = (*byte & !mask) | value; } } /// Look up a descriptor by name. fn lookup(&self, name: &str) -> SetResult<(usize, detail::Detail)> { match probe(self.template, name, simple_hash(name)) { Err(_) => Err(SetError::BadName(name.to_string())), Ok(entry) => { let d = &self.template.descriptors[self.template.hash_table[entry] as usize]; Ok((d.offset as usize, d.detail)) } } } } fn parse_bool_value(value: &str) -> SetResult { match value { "true" | "on" | "yes" | "1" => Ok(true), "false" | "off" | "no" | "0" => Ok(false), _ => Err(SetError::BadValue("bool".to_string())), } } fn parse_enum_value(value: &str, choices: &[&str]) -> SetResult { match choices.iter().position(|&tag| tag == value) { Some(idx) => Ok(idx as u8), None => { // TODO: Use `join` instead of this code, once // https://github.com/rust-lang/rust/issues/27747 is resolved. let mut all_choices = String::new(); let mut first = true; for choice in choices { if first { first = false } else { all_choices += ", "; } all_choices += choice; } Err(SetError::BadValue(format!("any among {}", all_choices))) } } } impl Configurable for Builder { fn enable(&mut self, name: &str) -> SetResult<()> { use self::detail::Detail; let (offset, detail) = self.lookup(name)?; match detail { Detail::Bool { bit } => { self.set_bit(offset, bit, true); Ok(()) } Detail::Preset => { self.apply_preset(&self.template.presets[offset..]); Ok(()) } _ => Err(SetError::BadType), } } fn set(&mut self, name: &str, value: &str) -> SetResult<()> { use self::detail::Detail; let (offset, detail) = self.lookup(name)?; match detail { Detail::Bool { bit } => { self.set_bit(offset, bit, parse_bool_value(value)?); } Detail::Num => { self.bytes[offset] = value .parse() .map_err(|_| SetError::BadValue("number".to_string()))?; } Detail::Enum { last, enumerators } => { self.bytes[offset] = parse_enum_value(value, self.template.enums(last, enumerators))?; } Detail::Preset => return Err(SetError::BadName(name.to_string())), } Ok(()) } } /// An error produced when changing a setting. #[derive(Fail, Debug, PartialEq, Eq)] pub enum SetError { /// No setting by this name exists. #[fail(display = "No existing setting named '{}'", _0)] BadName(String), /// Type mismatch for setting (e.g., setting an enum setting as a bool). #[fail(display = "Trying to set a setting with the wrong type")] BadType, /// This is not a valid value for this setting. #[fail(display = "Unexpected value for a setting, expected {}", _0)] BadValue(String), } /// A result returned when changing a setting. pub type SetResult = Result; /// A reference to just the boolean predicates of a settings object. /// /// The settings objects themselves are generated and appear in the `isa/*/settings.rs` modules. /// Each settings object provides a `predicate_view()` method that makes it possible to query /// ISA predicates by number. #[derive(Clone, Copy)] pub struct PredicateView<'a>(&'a [u8]); impl<'a> PredicateView<'a> { /// Create a new view of a precomputed predicate vector. /// /// See the `predicate_view()` method on the various `Flags` types defined for each ISA. pub fn new(bits: &'a [u8]) -> Self { PredicateView(bits) } /// Check a numbered predicate. pub fn test(self, p: usize) -> bool { self.0[p / 8] & (1 << (p % 8)) != 0 } } /// Implementation details for generated code. /// /// This module holds definitions that need to be public so the can be instantiated by generated /// code in other modules. pub mod detail { use crate::constant_hash; use core::fmt; /// An instruction group template. pub struct Template { /// Name of the instruction group. pub name: &'static str, /// List of setting descriptors. pub descriptors: &'static [Descriptor], /// Union of all enumerators. pub enumerators: &'static [&'static str], /// Hash table of settings. pub hash_table: &'static [u16], /// Default values. pub defaults: &'static [u8], /// Pairs of (mask, value) for presets. pub presets: &'static [(u8, u8)], } impl Template { /// Get enumerators corresponding to a `Details::Enum`. pub fn enums(&self, last: u8, enumerators: u16) -> &[&'static str] { let from = enumerators as usize; let len = usize::from(last) + 1; &self.enumerators[from..from + len] } /// Format a setting value as a TOML string. This is mostly for use by the generated /// `Display` implementation. pub fn format_toml_value( &self, detail: Detail, byte: u8, f: &mut fmt::Formatter, ) -> fmt::Result { match detail { Detail::Bool { bit } => write!(f, "{}", (byte & (1 << bit)) != 0), Detail::Num => write!(f, "{}", byte), Detail::Enum { last, enumerators } => { if byte <= last { let tags = self.enums(last, enumerators); write!(f, "\"{}\"", tags[usize::from(byte)]) } else { write!(f, "{}", byte) } } // Presets aren't printed. They are reflected in the other settings. Detail::Preset { .. } => Ok(()), } } } /// The template contains a hash table for by-name lookup. impl<'a> constant_hash::Table<&'a str> for Template { fn len(&self) -> usize { self.hash_table.len() } fn key(&self, idx: usize) -> Option<&'a str> { let e = self.hash_table[idx] as usize; if e < self.descriptors.len() { Some(self.descriptors[e].name) } else { None } } } /// A setting descriptor holds the information needed to generically set and print a setting. /// /// Each settings group will be represented as a constant DESCRIPTORS array. pub struct Descriptor { /// Lower snake-case name of setting as defined in meta. pub name: &'static str, /// Offset of byte containing this setting. pub offset: u32, /// Additional details, depending on the kind of setting. pub detail: Detail, } /// The different kind of settings along with descriptor bits that depend on the kind. #[derive(Clone, Copy)] pub enum Detail { /// A boolean setting only uses one bit, numbered from LSB. Bool { /// 0-7. bit: u8, }, /// A numerical setting uses the whole byte. Num, /// An Enum setting uses a range of enumerators. Enum { /// Numerical value of last enumerator, allowing for 1-256 enumerators. last: u8, /// First enumerator in the ENUMERATORS table. enumerators: u16, }, /// A preset is not an individual setting, it is a collection of settings applied at once. /// /// The `Descriptor::offset` field refers to the `PRESETS` table. Preset, } impl Detail { /// Check if a detail is a Detail::Preset. Useful because the Descriptor /// offset field has a different meaning when the detail is a preset. pub fn is_preset(self) -> bool { match self { Detail::Preset => true, _ => false, } } } } // Include code generated by `meta/gen_settings.rs`. This file contains a public `Flags` struct // with an implementation for all of the settings defined in // `cranelift-codegen/meta/src/shared/settings.rs`. include!(concat!(env!("OUT_DIR"), "/settings.rs")); /// Wrapper containing flags and optionally a `TargetIsa` trait object. /// /// A few passes need to access the flags but only optionally a target ISA. The `FlagsOrIsa` /// wrapper can be used to pass either, and extract the flags so they are always accessible. #[derive(Clone, Copy)] pub struct FlagsOrIsa<'a> { /// Flags are always present. pub flags: &'a Flags, /// The ISA may not be present. pub isa: Option<&'a dyn TargetIsa>, } impl<'a> From<&'a Flags> for FlagsOrIsa<'a> { fn from(flags: &'a Flags) -> FlagsOrIsa { FlagsOrIsa { flags, isa: None } } } impl<'a> From<&'a dyn TargetIsa> for FlagsOrIsa<'a> { fn from(isa: &'a dyn TargetIsa) -> FlagsOrIsa { FlagsOrIsa { flags: isa.flags(), isa: Some(isa), } } } #[cfg(test)] mod tests { use super::Configurable; use super::SetError::*; use super::{builder, Flags}; use std::string::ToString; #[test] fn display_default() { let b = builder(); let f = Flags::new(b); assert_eq!( f.to_string(), "[shared]\n\ opt_level = \"default\"\n\ libcall_call_conv = \"isa_default\"\n\ baldrdash_prologue_words = 0\n\ probestack_size_log2 = 12\n\ enable_verifier = true\n\ is_pic = false\n\ colocated_libcalls = false\n\ avoid_div_traps = false\n\ enable_float = true\n\ enable_nan_canonicalization = false\n\ enable_simd = false\n\ enable_atomics = true\n\ enable_safepoints = false\n\ allones_funcaddrs = false\n\ probestack_enabled = true\n\ probestack_func_adjusts_sp = false\n\ jump_tables_enabled = true\n" ); assert_eq!(f.opt_level(), super::OptLevel::Default); assert_eq!(f.enable_simd(), false); assert_eq!(f.baldrdash_prologue_words(), 0); } #[test] fn modify_bool() { let mut b = builder(); assert_eq!(b.enable("not_there"), Err(BadName("not_there".to_string()))); assert_eq!(b.enable("enable_simd"), Ok(())); assert_eq!(b.set("enable_simd", "false"), Ok(())); let f = Flags::new(b); assert_eq!(f.enable_simd(), false); } #[test] fn modify_string() { let mut b = builder(); assert_eq!( b.set("not_there", "true"), Err(BadName("not_there".to_string())) ); assert_eq!(b.set("enable_simd", ""), Err(BadValue("bool".to_string()))); assert_eq!( b.set("enable_simd", "best"), Err(BadValue("bool".to_string())) ); assert_eq!( b.set("opt_level", "true"), Err(BadValue("any among default, best, fastest".to_string())) ); assert_eq!(b.set("opt_level", "best"), Ok(())); assert_eq!(b.set("enable_simd", "0"), Ok(())); let f = Flags::new(b); assert_eq!(f.enable_simd(), false); assert_eq!(f.opt_level(), super::OptLevel::Best); } }