#!/bin/bash # The following script demonstrates how to execute a machine learning inference using the wasi-nn module optionally # compiled into Wasmtime. Calling it will download the necessary model and tensor files stored separately in $FIXTURE # into $TMP_DIR (optionally pass a directory with existing files as the first argument to re-try the script). Then, # it will compile the example code in crates/wasi-nn/tests/example into a Wasm file that is subsequently # executed with the Wasmtime CLI. set -e WASMTIME_DIR=$(dirname "$0" | xargs dirname) FIXTURE=https://gist.github.com/abrown/c7847bf3701f9efbb2070da1878542c1/raw/07a9f163994b0ff8f0d7c5a5c9645ec3d8b24024 # Inform the environment of OpenVINO library locations. Then we use OPENVINO_INSTALL_DIR below to avoid building all of # OpenVINO from source (quite slow). source /opt/intel/openvino/bin/setupvars.sh # Build Wasmtime with wasi-nn enabled; we attempt this first to avoid extra work if the build fails. OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo build -p wasmtime-cli --features wasi-nn # Download all necessary test fixtures to the temporary directory. TMP_DIR=${1:-$(mktemp -d -t ci-XXXXXXXXXX)} wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/frozen_inference_graph.bin wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/frozen_inference_graph.xml wget --no-clobber --directory-prefix=$TMP_DIR $FIXTURE/tensor-1x3x300x300-f32.bgr # Now build an example that uses the wasi-nn API. pushd $WASMTIME_DIR/crates/wasi-nn/examples/classification-example cargo build --release --target=wasm32-wasi cp target/wasm32-wasi/release/wasi-nn-example.wasm $TMP_DIR popd # Run the example in Wasmtime (note that the example uses `fixture` as the expected location of the model/tensor files). OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo run --features wasi-nn -- run --mapdir fixture::$TMP_DIR $TMP_DIR/wasi-nn-example.wasm # Clean up. rm -rf $TMP_DIR