//! This module contains the bulk of the interesting code performing the translation between //! WebAssembly and Cretonne IL. //! //! The translation is done in one pass, opcode by opcode. Two main data structures are used during //! code translations: the value stack and the control stack. The value stack mimics the execution //! of the WebAssembly stack machine: each instruction result is pushed onto the stack and //! instruction arguments are popped off the stack. Similarly, when encountering a control flow //! block, it is pushed onto the control stack and popped off when encountering the corresponding //! `End`. //! //! Another data structure, the translation state, records information concerning unreachable code //! status and about if inserting a return at the end of the function is necessary. //! //! Some of the WebAssembly instructions need information about the runtime to be translated: //! //! - the loads and stores need the memory base address; //! - the `get_global` et `set_global` instructions depends on how the globals are implemented; //! - `current_memory` and `grow_memory` are runtime functions; //! - `call_indirect` has to translate the function index into the address of where this //! is; //! //! That is why `translate_function_body` takes an object having the `WasmRuntime` trait as //! argument. use cretonne::ir::{self, Function, Signature, Type, InstBuilder, FunctionName, Ebb, MemFlags}; use cretonne::ir::types::*; use cretonne::ir::immediates::{Ieee32, Ieee64}; use cretonne::ir::condcodes::{IntCC, FloatCC}; use cton_frontend::{ILBuilder, FunctionBuilder}; use wasmparser::{Parser, ParserState, Operator, WasmDecoder, MemoryImmediate}; use translation_utils::{f32_translation, f64_translation, type_to_type, translate_type, Local}; use translation_utils::{TableIndex, SignatureIndex, FunctionIndex}; use state::{TranslationState, ControlStackFrame}; use std::collections::HashMap; use runtime::{FuncEnvironment, GlobalValue, WasmRuntime}; use std::u32; /// Returns a well-formed Cretonne IL function from a wasm function body and a signature. pub fn translate_function_body( parser: &mut Parser, function_index: FunctionIndex, sig: &Signature, locals: &[(usize, Type)], exports: &Option>, il_builder: &mut ILBuilder, runtime: &mut WasmRuntime, ) -> Result { runtime.next_function(); // First we build the Function object with its name and signature let mut func = Function::new(); let args_num: usize = sig.argument_types.len(); func.signature = sig.clone(); if let Some(ref exports) = *exports { if let Some(name) = exports.get(&function_index) { func.name = FunctionName::new(name.clone()); } } // We introduce an arbitrary scope for the FunctionBuilder object { let mut builder = FunctionBuilder::new(&mut func, il_builder); let first_ebb = builder.create_ebb(); builder.switch_to_block(first_ebb, &[]); builder.seal_block(first_ebb); for (i, arg_type) in sig.argument_types.iter().enumerate() { // First we declare the function arguments' as non-SSA vars because they will be // accessed by get_local let arg_value = builder.arg_value(i); builder.declare_var(Local(i as u32), arg_type.value_type); builder.def_var(Local(i as u32), arg_value); } // We also declare and initialize to 0 the local variables let mut local_index = args_num; for &(loc_count, ty) in locals { let val = match ty { I32 => builder.ins().iconst(ty, 0), I64 => builder.ins().iconst(ty, 0), F32 => builder.ins().f32const(Ieee32::with_bits(0)), F64 => builder.ins().f64const(Ieee64::with_bits(0)), _ => panic!("should not happen"), }; for _ in 0..loc_count { builder.declare_var(Local(local_index as u32), ty); builder.def_var(Local(local_index as u32), val); local_index += 1; } } // We initialize the control stack with the implicit function block let mut state = TranslationState::new(); let end_ebb = builder.create_ebb(); state.initialize(sig, end_ebb); // Now the main loop that reads every wasm instruction and translates it loop { let parser_state = parser.read(); match *parser_state { ParserState::CodeOperator(ref op) => { if state.in_unreachable_code() { translate_unreachable_operator(op, &mut builder, &mut state) } else { translate_operator(op, &mut builder, &mut state, runtime) } } ParserState::EndFunctionBody => break, _ => return Err(String::from("wrong content in function body")), } } // In WebAssembly, the final return instruction is implicit so we need to build it // explicitely in Cretonne IL. if !builder.is_filled() && (!builder.is_unreachable() || !builder.is_pristine()) { let cut_index = state.stack.len() - sig.return_types.len(); builder.ins().return_(&state.stack[cut_index..]); state.stack.truncate(cut_index); } // Because the function has an implicit block as body, we need to explicitely close it. let frame = state.control_stack.pop().unwrap(); builder.switch_to_block(frame.following_code(), frame.return_values()); builder.seal_block(frame.following_code()); // If the block is reachable we also have to include a return instruction in it. if !builder.is_unreachable() { state.stack.truncate(frame.original_stack_size()); state.stack.extend_from_slice( builder.ebb_args(frame.following_code()), ); let cut_index = state.stack.len() - sig.return_types.len(); builder.ins().return_(&state.stack[cut_index..]); state.stack.truncate(cut_index); } } Ok(func) } /// Translates wasm operators into Cretonne IL instructions. Returns `true` if it inserted /// a return. fn translate_operator( op: &Operator, builder: &mut FunctionBuilder, state: &mut TranslationState, runtime: &mut WasmRuntime, ) { // This big match treats all Wasm code operators. match *op { /********************************** Locals **************************************** * `get_local` and `set_local` are treated as non-SSA variables and will completely * diseappear in the Cretonne Code ***********************************************************************************/ Operator::GetLocal { local_index } => state.push1(builder.use_var(Local(local_index))), Operator::SetLocal { local_index } => { let val = state.pop1(); builder.def_var(Local(local_index), val); } Operator::TeeLocal { local_index } => { let val = state.peek1(); builder.def_var(Local(local_index), val); } /********************************** Globals **************************************** * `get_global` and `set_global` are handled by the runtime. ***********************************************************************************/ Operator::GetGlobal { global_index } => { let val = match state.get_global(builder.func, global_index, runtime) { GlobalValue::Const(val) => val, GlobalValue::Memory { gv, ty } => { let addr = builder.ins().global_addr(runtime.native_pointer(), gv); // TODO: It is likely safe to set `aligned notrap` flags on a global load. let flags = ir::MemFlags::new(); builder.ins().load(ty, flags, addr, 0) } }; state.push1(val); } Operator::SetGlobal { global_index } => { match state.get_global(builder.func, global_index, runtime) { GlobalValue::Const(_) => panic!("global #{} is a constant", global_index), GlobalValue::Memory { gv, .. } => { let addr = builder.ins().global_addr(runtime.native_pointer(), gv); // TODO: It is likely safe to set `aligned notrap` flags on a global store. let flags = ir::MemFlags::new(); let val = state.pop1(); builder.ins().store(flags, val, addr, 0); } } } /********************************* Stack misc *************************************** * `drop`, `nop`, `unreachable` and `select`. ***********************************************************************************/ Operator::Drop => { state.pop1(); } Operator::Select => { let (arg1, arg2, cond) = state.pop3(); state.push1(builder.ins().select(cond, arg2, arg1)); } Operator::Nop => { // We do nothing } Operator::Unreachable => { builder.ins().trap(); state.real_unreachable_stack_depth = 1; } /***************************** Control flow blocks ********************************** * When starting a control flow block, we create a new `Ebb` that will hold the code * after the block, and we push a frame on the control stack. Depending on the type * of block, we create a new `Ebb` for the body of the block with an associated * jump instruction. * * The `End` instruction pops the last control frame from the control stack, seals * the destination block (since `br` instructions targeting it only appear inside the * block and have already been translated) and modify the value stack to use the * possible `Ebb`'s arguments values. ***********************************************************************************/ Operator::Block { ty } => { let next = builder.create_ebb(); if let Ok(ty_cre) = type_to_type(&ty) { builder.append_ebb_arg(next, ty_cre); } state.push_block(next, translate_type(ty).unwrap()); } Operator::Loop { ty } => { let loop_body = builder.create_ebb(); let next = builder.create_ebb(); if let Ok(ty_cre) = type_to_type(&ty) { builder.append_ebb_arg(next, ty_cre); } builder.ins().jump(loop_body, &[]); state.push_loop(loop_body, next, translate_type(ty).unwrap()); builder.switch_to_block(loop_body, &[]); } Operator::If { ty } => { let val = state.pop1(); let if_not = builder.create_ebb(); let jump_inst = builder.ins().brz(val, if_not, &[]); // Here we append an argument to an Ebb targeted by an argumentless jump instruction // But in fact there are two cases: // - either the If does not have a Else clause, in that case ty = EmptyBlock // and we add nothing; // - either the If have an Else clause, in that case the destination of this jump // instruction will be changed later when we translate the Else operator. if let Ok(ty_cre) = type_to_type(&ty) { builder.append_ebb_arg(if_not, ty_cre); } state.push_if(jump_inst, if_not, translate_type(ty).unwrap()); } Operator::Else => { // We take the control frame pushed by the if, use its ebb as the else body // and push a new control frame with a new ebb for the code after the if/then/else // At the end of the then clause we jump to the destination let i = state.control_stack.len() - 1; let (destination, return_values, branch_inst) = match state.control_stack[i] { ControlStackFrame::If { destination, ref return_values, branch_inst, .. } => (destination, return_values, branch_inst), _ => panic!("should not happen"), }; let cut_index = state.stack.len() - return_values.len(); builder.ins().jump(destination, &state.stack[cut_index..]); state.stack.truncate(cut_index); // We change the target of the branch instruction let else_ebb = builder.create_ebb(); builder.change_jump_destination(branch_inst, else_ebb); builder.seal_block(else_ebb); builder.switch_to_block(else_ebb, &[]); } Operator::End => { let frame = state.control_stack.pop().unwrap(); if !builder.is_unreachable() || !builder.is_pristine() { let cut_index = state.stack.len() - frame.return_values().len(); builder.ins().jump( frame.following_code(), &state.stack[cut_index..], ); state.stack.truncate(cut_index); } builder.switch_to_block(frame.following_code(), frame.return_values()); builder.seal_block(frame.following_code()); // If it is a loop we also have to seal the body loop block match frame { ControlStackFrame::Loop { header, .. } => builder.seal_block(header), _ => {} } state.stack.truncate(frame.original_stack_size()); state.stack.extend_from_slice( builder.ebb_args(frame.following_code()), ); } /**************************** Branch instructions ********************************* * The branch instructions all have as arguments a target nesting level, which * corresponds to how many control stack frames do we have to pop to get the * destination `Ebb`. * * Once the destination `Ebb` is found, we sometimes have to declare a certain depth * of the stack unreachable, because some branch instructions are terminator. * * The `br_table` case is much more complicated because Cretonne's `br_table` instruction * does not support jump arguments like all the other branch instructions. That is why, in * the case where we would use jump arguments for every other branch instructions, we * need to split the critical edges leaving the `br_tables` by creating one `Ebb` per * table destination; the `br_table` will point to these newly created `Ebbs` and these * `Ebb`s contain only a jump instruction pointing to the final destination, this time with * jump arguments. * * This system is also implemented in Cretonne's SSA construction algorithm, because * `use_var` located in a destination `Ebb` of a `br_table` might trigger the addition * of jump arguments in each predecessor branch instruction, one of which might be a * `br_table`. ***********************************************************************************/ Operator::Br { relative_depth } => { let i = state.control_stack.len() - 1 - (relative_depth as usize); let frame = &mut state.control_stack[i]; let cut_index = state.stack.len() - if frame.is_loop() { 0 } else { frame.return_values().len() }; builder.ins().jump( frame.br_destination(), &state.stack[cut_index..], ); state.stack.truncate(cut_index); // We signal that all the code that follows until the next End is unreachable frame.set_reachable(); state.real_unreachable_stack_depth = 1 + relative_depth as usize; } Operator::BrIf { relative_depth } => { let val = state.pop1(); let i = state.control_stack.len() - 1 - (relative_depth as usize); let frame = &mut state.control_stack[i]; let cut_index = state.stack.len() - if frame.is_loop() { 0 } else { frame.return_values().len() }; builder.ins().brnz( val, frame.br_destination(), &state.stack[cut_index..], ); // The values returned by the branch are still available for the reachable // code that comes after it frame.set_reachable(); } Operator::BrTable { ref table } => { let (depths, default) = table.read_table(); let mut min_depth = default; for depth in &depths { if *depth < min_depth { min_depth = *depth; } } let jump_args_count = { let i = state.control_stack.len() - 1 - (min_depth as usize); let min_depth_frame = &state.control_stack[i]; if min_depth_frame.is_loop() { 0 } else { min_depth_frame.return_values().len() } }; if jump_args_count == 0 { // No jump arguments let val = state.pop1(); let jt = builder.create_jump_table(); for (index, depth) in depths.iter().enumerate() { let i = state.control_stack.len() - 1 - (*depth as usize); let frame = &mut state.control_stack[i]; let ebb = frame.br_destination(); builder.insert_jump_table_entry(jt, index, ebb); frame.set_reachable(); } builder.ins().br_table(val, jt); let i = state.control_stack.len() - 1 - (default as usize); let frame = &mut state.control_stack[i]; let ebb = frame.br_destination(); builder.ins().jump(ebb, &[]); state.real_unreachable_stack_depth = 1 + min_depth as usize; frame.set_reachable(); } else { // Here we have jump arguments, but Cretonne's br_table doesn't support them // We then proceed to split the edges going out of the br_table let val = state.pop1(); let cut_index = state.stack.len() - jump_args_count; let jt = builder.create_jump_table(); let dest_ebbs: HashMap = depths.iter().enumerate().fold(HashMap::new(), |mut acc, (index, &depth)| { if acc.get(&(depth as usize)).is_none() { let branch_ebb = builder.create_ebb(); builder.insert_jump_table_entry(jt, index, branch_ebb); acc.insert(depth as usize, branch_ebb); return acc; }; let branch_ebb = acc[&(depth as usize)]; builder.insert_jump_table_entry(jt, index, branch_ebb); acc }); builder.ins().br_table(val, jt); let default_ebb = state.control_stack[state.control_stack.len() - 1 - (default as usize)] .br_destination(); builder.ins().jump(default_ebb, &state.stack[cut_index..]); for (depth, dest_ebb) in dest_ebbs { builder.switch_to_block(dest_ebb, &[]); builder.seal_block(dest_ebb); let i = state.control_stack.len() - 1 - depth; let frame = &mut state.control_stack[i]; let real_dest_ebb = frame.br_destination(); builder.ins().jump(real_dest_ebb, &state.stack[cut_index..]); frame.set_reachable(); } state.stack.truncate(cut_index); state.real_unreachable_stack_depth = 1 + min_depth as usize; } } Operator::Return => { let return_count = state.control_stack[0].return_values().len(); let cut_index = state.stack.len() - return_count; builder.ins().return_(&state.stack[cut_index..]); state.stack.truncate(cut_index); state.real_unreachable_stack_depth = 1; } /************************************ Calls **************************************** * The call instructions pop off their arguments from the stack and append their * return values to it. `call_indirect` needs runtime support because there is an * argument referring to an index in the external functions table of the module. ************************************************************************************/ Operator::Call { function_index } => { let (fref, num_args) = state.get_direct_func(builder.func, function_index, runtime); let call = runtime.translate_call( builder.cursor(), function_index as FunctionIndex, fref, state.peekn(num_args), ); state.popn(num_args); state.pushn(builder.func.dfg.inst_results(call)); } Operator::CallIndirect { index, table_index } => { // `index` is the index of the function's signature and `table_index` is the index of // the table to search the function in. let (sigref, num_args) = state.get_indirect_sig(builder.func, index, runtime); let callee = state.pop1(); let call = runtime.translate_call_indirect( builder.cursor(), table_index as TableIndex, index as SignatureIndex, sigref, callee, &state.peekn(num_args), ); state.popn(num_args); state.pushn(builder.func.dfg.inst_results(call)); } /******************************* Memory management *********************************** * Memory management is handled by runtime. It is usually translated into calls to * special functions. ************************************************************************************/ Operator::GrowMemory { reserved: _ } => { let val = state.pop1(); state.push1(runtime.translate_grow_memory(builder, val)); } Operator::CurrentMemory { reserved: _ } => { state.push1(runtime.translate_current_memory(builder)); } /******************************* Load instructions *********************************** * Wasm specifies an integer alignment flag but we drop it in Cretonne. * The memory base address is provided by the runtime. * TODO: differentiate between 32 bit and 64 bit architecture, to put the uextend or not ************************************************************************************/ Operator::I32Load8U { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Uload8, I32, builder, state, runtime); } Operator::I32Load16U { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Uload16, I32, builder, state, runtime); } Operator::I32Load8S { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Sload8, I32, builder, state, runtime); } Operator::I32Load16S { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Sload16, I32, builder, state, runtime); } Operator::I64Load8U { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Uload8, I64, builder, state, runtime); } Operator::I64Load16U { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Uload16, I64, builder, state, runtime); } Operator::I64Load8S { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Sload8, I64, builder, state, runtime); } Operator::I64Load16S { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Sload16, I64, builder, state, runtime); } Operator::I64Load32S { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Sload32, I64, builder, state, runtime); } Operator::I64Load32U { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Uload32, I64, builder, state, runtime); } Operator::I32Load { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Load, I32, builder, state, runtime); } Operator::F32Load { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Load, F32, builder, state, runtime); } Operator::I64Load { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Load, I64, builder, state, runtime); } Operator::F64Load { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_load(offset, ir::Opcode::Load, F64, builder, state, runtime); } /****************************** Store instructions *********************************** * Wasm specifies an integer alignment flag but we drop it in Cretonne. * The memory base address is provided by the runtime. * TODO: differentiate between 32 bit and 64 bit architecture, to put the uextend or not ************************************************************************************/ Operator::I32Store { memory_immediate: MemoryImmediate { flags: _, offset } } | Operator::I64Store { memory_immediate: MemoryImmediate { flags: _, offset } } | Operator::F32Store { memory_immediate: MemoryImmediate { flags: _, offset } } | Operator::F64Store { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_store(offset, ir::Opcode::Store, builder, state, runtime); } Operator::I32Store8 { memory_immediate: MemoryImmediate { flags: _, offset } } | Operator::I64Store8 { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_store(offset, ir::Opcode::Istore8, builder, state, runtime); } Operator::I32Store16 { memory_immediate: MemoryImmediate { flags: _, offset } } | Operator::I64Store16 { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_store(offset, ir::Opcode::Istore16, builder, state, runtime); } Operator::I64Store32 { memory_immediate: MemoryImmediate { flags: _, offset } } => { translate_store(offset, ir::Opcode::Istore32, builder, state, runtime); } /****************************** Nullary Operators ************************************/ Operator::I32Const { value } => state.push1(builder.ins().iconst(I32, value as i64)), Operator::I64Const { value } => state.push1(builder.ins().iconst(I64, value)), Operator::F32Const { value } => { state.push1(builder.ins().f32const(f32_translation(value))); } Operator::F64Const { value } => { state.push1(builder.ins().f64const(f64_translation(value))); } /******************************* Unary Operators *************************************/ Operator::I32Clz => { let arg = state.pop1(); let val = builder.ins().clz(arg); state.push1(builder.ins().sextend(I32, val)); } Operator::I64Clz => { let arg = state.pop1(); let val = builder.ins().clz(arg); state.push1(builder.ins().sextend(I64, val)); } Operator::I32Ctz => { let val = state.pop1(); let short_res = builder.ins().ctz(val); state.push1(builder.ins().sextend(I32, short_res)); } Operator::I64Ctz => { let val = state.pop1(); let short_res = builder.ins().ctz(val); state.push1(builder.ins().sextend(I64, short_res)); } Operator::I32Popcnt => { let arg = state.pop1(); let val = builder.ins().popcnt(arg); state.push1(builder.ins().sextend(I32, val)); } Operator::I64Popcnt => { let arg = state.pop1(); let val = builder.ins().popcnt(arg); state.push1(builder.ins().sextend(I64, val)); } Operator::I64ExtendSI32 => { let val = state.pop1(); state.push1(builder.ins().sextend(I64, val)); } Operator::I64ExtendUI32 => { let val = state.pop1(); state.push1(builder.ins().uextend(I64, val)); } Operator::I32WrapI64 => { let val = state.pop1(); state.push1(builder.ins().ireduce(I32, val)); } Operator::F32Sqrt | Operator::F64Sqrt => { let arg = state.pop1(); state.push1(builder.ins().sqrt(arg)); } Operator::F32Ceil | Operator::F64Ceil => { let arg = state.pop1(); state.push1(builder.ins().ceil(arg)); } Operator::F32Floor | Operator::F64Floor => { let arg = state.pop1(); state.push1(builder.ins().floor(arg)); } Operator::F32Trunc | Operator::F64Trunc => { let arg = state.pop1(); state.push1(builder.ins().trunc(arg)); } Operator::F32Nearest | Operator::F64Nearest => { let arg = state.pop1(); state.push1(builder.ins().nearest(arg)); } Operator::F32Abs | Operator::F64Abs => { let val = state.pop1(); state.push1(builder.ins().fabs(val)); } Operator::F32Neg | Operator::F64Neg => { let arg = state.pop1(); state.push1(builder.ins().fneg(arg)); } Operator::F64ConvertUI64 | Operator::F64ConvertUI32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_from_uint(F64, val)); } Operator::F64ConvertSI64 | Operator::F64ConvertSI32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_from_sint(F64, val)); } Operator::F32ConvertSI64 | Operator::F32ConvertSI32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_from_sint(F32, val)); } Operator::F32ConvertUI64 | Operator::F32ConvertUI32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_from_uint(F32, val)); } Operator::F64PromoteF32 => { let val = state.pop1(); state.push1(builder.ins().fpromote(F64, val)); } Operator::F32DemoteF64 => { let val = state.pop1(); state.push1(builder.ins().fdemote(F32, val)); } Operator::I64TruncSF64 | Operator::I64TruncSF32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_to_sint(I64, val)); } Operator::I32TruncSF64 | Operator::I32TruncSF32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_to_sint(I32, val)); } Operator::I64TruncUF64 | Operator::I64TruncUF32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_to_uint(I64, val)); } Operator::I32TruncUF64 | Operator::I32TruncUF32 => { let val = state.pop1(); state.push1(builder.ins().fcvt_to_uint(I32, val)); } Operator::F32ReinterpretI32 => { let val = state.pop1(); state.push1(builder.ins().bitcast(F32, val)); } Operator::F64ReinterpretI64 => { let val = state.pop1(); state.push1(builder.ins().bitcast(F64, val)); } Operator::I32ReinterpretF32 => { let val = state.pop1(); state.push1(builder.ins().bitcast(I32, val)); } Operator::I64ReinterpretF64 => { let val = state.pop1(); state.push1(builder.ins().bitcast(I64, val)); } /****************************** Binary Operators ************************************/ Operator::I32Add | Operator::I64Add => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().iadd(arg1, arg2)); } Operator::I32And | Operator::I64And => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().band(arg1, arg2)); } Operator::I32Or | Operator::I64Or => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().bor(arg1, arg2)); } Operator::I32Xor | Operator::I64Xor => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().bxor(arg1, arg2)); } Operator::I32Shl | Operator::I64Shl => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().ishl(arg1, arg2)); } Operator::I32ShrS | Operator::I64ShrS => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().sshr(arg1, arg2)); } Operator::I32ShrU | Operator::I64ShrU => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().ushr(arg1, arg2)); } Operator::I32Rotl | Operator::I64Rotl => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().rotl(arg1, arg2)); } Operator::I32Rotr | Operator::I64Rotr => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().rotr(arg1, arg2)); } Operator::F32Add | Operator::F64Add => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fadd(arg1, arg2)); } Operator::I32Sub | Operator::I64Sub => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().isub(arg1, arg2)); } Operator::F32Sub | Operator::F64Sub => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fsub(arg1, arg2)); } Operator::I32Mul | Operator::I64Mul => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().imul(arg1, arg2)); } Operator::F32Mul | Operator::F64Mul => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fmul(arg1, arg2)); } Operator::F32Div | Operator::F64Div => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fdiv(arg1, arg2)); } Operator::I32DivS | Operator::I64DivS => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().sdiv(arg1, arg2)); } Operator::I32DivU | Operator::I64DivU => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().udiv(arg1, arg2)); } Operator::I32RemS | Operator::I64RemS => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().srem(arg1, arg2)); } Operator::I32RemU | Operator::I64RemU => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().urem(arg1, arg2)); } Operator::F32Min | Operator::F64Min => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fmin(arg1, arg2)); } Operator::F32Max | Operator::F64Max => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fmax(arg1, arg2)); } Operator::F32Copysign | Operator::F64Copysign => { let (arg1, arg2) = state.pop2(); state.push1(builder.ins().fcopysign(arg1, arg2)); } /**************************** Comparison Operators **********************************/ Operator::I32LtS | Operator::I64LtS => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::SignedLessThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32LtU | Operator::I64LtU => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::UnsignedLessThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32LeS | Operator::I64LeS => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::SignedLessThanOrEqual, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32LeU | Operator::I64LeU => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp( IntCC::UnsignedLessThanOrEqual, arg1, arg2, ); state.push1(builder.ins().bint(I32, val)); } Operator::I32GtS | Operator::I64GtS => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::SignedGreaterThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32GtU | Operator::I64GtU => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::UnsignedGreaterThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32GeS | Operator::I64GeS => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp( IntCC::SignedGreaterThanOrEqual, arg1, arg2, ); state.push1(builder.ins().bint(I32, val)); } Operator::I32GeU | Operator::I64GeU => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp( IntCC::UnsignedGreaterThanOrEqual, arg1, arg2, ); state.push1(builder.ins().bint(I32, val)); } Operator::I32Eqz | Operator::I64Eqz => { let arg = state.pop1(); let val = builder.ins().icmp_imm(IntCC::Equal, arg, 0); state.push1(builder.ins().bint(I32, val)); } Operator::I32Eq | Operator::I64Eq => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::Equal, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Eq | Operator::F64Eq => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::Equal, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::I32Ne | Operator::I64Ne => { let (arg1, arg2) = state.pop2(); let val = builder.ins().icmp(IntCC::NotEqual, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Ne | Operator::F64Ne => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::NotEqual, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Gt | Operator::F64Gt => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::GreaterThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Ge | Operator::F64Ge => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::GreaterThanOrEqual, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Lt | Operator::F64Lt => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::LessThan, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } Operator::F32Le | Operator::F64Le => { let (arg1, arg2) = state.pop2(); let val = builder.ins().fcmp(FloatCC::LessThanOrEqual, arg1, arg2); state.push1(builder.ins().bint(I32, val)); } } } /// Deals with a Wasm instruction located in an unreachable portion of the code. Most of them /// are dropped but special ones like `End` or `Else` signal the potential end of the unreachable /// portion so the translation state muts be updated accordingly. fn translate_unreachable_operator( op: &Operator, builder: &mut FunctionBuilder, state: &mut TranslationState, ) { let stack = &mut state.stack; let control_stack = &mut state.control_stack; // We don't translate because the code is unreachable // Nevertheless we have to record a phantom stack for this code // to know when the unreachable code ends match *op { Operator::If { ty: _ } | Operator::Loop { ty: _ } | Operator::Block { ty: _ } => { state.phantom_unreachable_stack_depth += 1; } Operator::End => { if state.phantom_unreachable_stack_depth > 0 { state.phantom_unreachable_stack_depth -= 1; } else { // This End corresponds to a real control stack frame // We switch to the destination block but we don't insert // a jump instruction since the code is still unreachable let frame = control_stack.pop().unwrap(); builder.switch_to_block(frame.following_code(), &[]); builder.seal_block(frame.following_code()); match frame { // If it is a loop we also have to seal the body loop block ControlStackFrame::Loop { header, .. } => builder.seal_block(header), // If it is an if then the code after is reachable again ControlStackFrame::If { .. } => { state.real_unreachable_stack_depth = 1; } _ => {} } if frame.is_reachable() { state.real_unreachable_stack_depth = 1; } // Now we have to split off the stack the values not used // by unreachable code that hasn't been translated stack.truncate(frame.original_stack_size()); // And add the return values of the block but only if the next block is reachble // (which corresponds to testing if the stack depth is 1) if state.real_unreachable_stack_depth == 1 { stack.extend_from_slice(builder.ebb_args(frame.following_code())); } state.real_unreachable_stack_depth -= 1; } } Operator::Else => { if state.phantom_unreachable_stack_depth > 0 { // This is part of a phantom if-then-else, we do nothing } else { // Encountering an real else means that the code in the else // clause is reachable again let (branch_inst, original_stack_size) = match control_stack[control_stack.len() - 1] { ControlStackFrame::If { branch_inst, original_stack_size, .. } => (branch_inst, original_stack_size), _ => panic!("should not happen"), }; // We change the target of the branch instruction let else_ebb = builder.create_ebb(); builder.change_jump_destination(branch_inst, else_ebb); builder.seal_block(else_ebb); builder.switch_to_block(else_ebb, &[]); // Now we have to split off the stack the values not used // by unreachable code that hasn't been translated stack.truncate(original_stack_size); state.real_unreachable_stack_depth = 0; } } _ => { // We don't translate because this is unreachable code } } } // Get the address+offset to use for a heap access. fn get_heap_addr( heap: ir::Heap, addr32: ir::Value, offset: u32, addr_ty: ir::Type, builder: &mut FunctionBuilder, ) -> (ir::Value, i32) { use std::cmp::min; let guard_size: i64 = builder.func.heaps[heap].guard_size.into(); assert!(guard_size > 0, "Heap guard pages currently required"); // Generate `heap_addr` instructions that are friendly to CSE by checking offsets that are // multiples of the guard size. Add one to make sure that we check the pointer itself is in // bounds. // // For accesses on the outer skirts of the guard pages, we expect that we get a trap // even if the access goes beyond the guard pages. This is because the first byte pointed to is // inside the guard pages. let check_size = min( u32::max_value() as i64, 1 + (offset as i64 / guard_size) * guard_size, ) as u32; let base = builder.ins().heap_addr(addr_ty, heap, addr32, check_size); // Native load/store instructions take a signed `Offset32` immediate, so adjust the base // pointer if necessary. if offset > i32::max_value() as u32 { // Offset doesn't fit in the load/store instruction. let adj = builder.ins().iadd_imm(base, i32::max_value() as i64 + 1); (adj, (offset - (i32::max_value() as u32 + 1)) as i32) } else { (base, offset as i32) } } // Translate a load instruction. fn translate_load( offset: u32, opcode: ir::Opcode, result_ty: ir::Type, builder: &mut FunctionBuilder, state: &mut TranslationState, environ: &FE, ) { let addr32 = state.pop1(); // We don't yet support multiple linear memories. let heap = state.get_heap(builder.func, 0, environ); let (base, offset) = get_heap_addr(heap, addr32, offset, environ.native_pointer(), builder); let flags = MemFlags::new(); let (load, dfg) = builder.ins().Load( opcode, result_ty, flags, offset.into(), base, ); state.push1(dfg.first_result(load)); } // Translate a store instruction. fn translate_store( offset: u32, opcode: ir::Opcode, builder: &mut FunctionBuilder, state: &mut TranslationState, environ: &FE, ) { let (addr32, val) = state.pop2(); let val_ty = builder.func.dfg.value_type(val); // We don't yet support multiple linear memories. let heap = state.get_heap(builder.func, 0, environ); let (base, offset) = get_heap_addr(heap, addr32, offset, environ.native_pointer(), builder); let flags = MemFlags::new(); builder.ins().Store( opcode, val_ty, flags, offset.into(), val, base, ); }