//! Lowering rules for X64. // ISLE integration glue. pub(super) mod isle; use crate::data_value::DataValue; use crate::ir::{ condcodes::{CondCode, FloatCC, IntCC}, types, AbiParam, ArgumentPurpose, ExternalName, Inst as IRInst, InstructionData, LibCall, Opcode, Signature, Type, }; use crate::isa::x64::abi::*; use crate::isa::x64::inst::args::*; use crate::isa::x64::inst::*; use crate::isa::{x64::settings as x64_settings, x64::X64Backend, CallConv}; use crate::machinst::lower::*; use crate::machinst::*; use crate::result::CodegenResult; use crate::settings::{Flags, TlsModel}; use alloc::vec::Vec; use log::trace; use smallvec::SmallVec; use std::convert::TryFrom; use target_lexicon::Triple; //============================================================================= // Helpers for instruction lowering. fn is_int_or_ref_ty(ty: Type) -> bool { match ty { types::I8 | types::I16 | types::I32 | types::I64 | types::R64 => true, types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true, types::R32 => panic!("shouldn't have 32-bits refs on x64"), _ => false, } } fn is_bool_ty(ty: Type) -> bool { match ty { types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true, types::R32 => panic!("shouldn't have 32-bits refs on x64"), _ => false, } } /// Returns whether the given specified `input` is a result produced by an instruction with Opcode /// `op`. // TODO investigate failures with checking against the result index. fn matches_input>( ctx: &mut C, input: InsnInput, op: Opcode, ) -> Option { let inputs = ctx.get_input_as_source_or_const(input.insn, input.input); inputs.inst.as_inst().and_then(|(src_inst, _)| { let data = ctx.data(src_inst); if data.opcode() == op { return Some(src_inst); } None }) } /// Emits instruction(s) to generate the given 64-bit constant value into a newly-allocated /// temporary register, returning that register. fn generate_constant>(ctx: &mut C, ty: Type, c: u64) -> ValueRegs { let from_bits = ty_bits(ty); let masked = if from_bits < 64 { c & ((1u64 << from_bits) - 1) } else { c }; let cst_copy = ctx.alloc_tmp(ty); for inst in Inst::gen_constant(cst_copy, masked as u128, ty, |ty| { ctx.alloc_tmp(ty).only_reg().unwrap() }) .into_iter() { ctx.emit(inst); } non_writable_value_regs(cst_copy) } /// Put the given input into possibly multiple registers, and mark it as used (side-effect). fn put_input_in_regs>(ctx: &mut C, spec: InsnInput) -> ValueRegs { let ty = ctx.input_ty(spec.insn, spec.input); let input = ctx.get_input_as_source_or_const(spec.insn, spec.input); if let Some(c) = input.constant { // Generate constants fresh at each use to minimize long-range register pressure. generate_constant(ctx, ty, c) } else { ctx.put_input_in_regs(spec.insn, spec.input) } } /// Put the given input into a register, and mark it as used (side-effect). fn put_input_in_reg>(ctx: &mut C, spec: InsnInput) -> Reg { put_input_in_regs(ctx, spec) .only_reg() .expect("Multi-register value not expected") } /// Determines whether a load operation (indicated by `src_insn`) can be merged /// into the current lowering point. If so, returns the address-base source (as /// an `InsnInput`) and an offset from that address from which to perform the /// load. fn is_mergeable_load>( ctx: &mut C, src_insn: IRInst, ) -> Option<(InsnInput, i32)> { let insn_data = ctx.data(src_insn); let inputs = ctx.num_inputs(src_insn); if inputs != 1 { return None; } let load_ty = ctx.output_ty(src_insn, 0); if ty_bits(load_ty) < 32 { // Narrower values are handled by ALU insts that are at least 32 bits // wide, which is normally OK as we ignore upper buts; but, if we // generate, e.g., a direct-from-memory 32-bit add for a byte value and // the byte is the last byte in a page, the extra data that we load is // incorrectly accessed. So we only allow loads to merge for // 32-bit-and-above widths. return None; } // SIMD instructions can only be load-coalesced when the loaded value comes // from an aligned address. if load_ty.is_vector() && !insn_data.memflags().map_or(false, |f| f.aligned()) { return None; } // Just testing the opcode is enough, because the width will always match if // the type does (and the type should match if the CLIF is properly // constructed). if insn_data.opcode() == Opcode::Load { let offset = insn_data .load_store_offset() .expect("load should have offset"); Some(( InsnInput { insn: src_insn, input: 0, }, offset, )) } else { None } } /// Put the given input into a register or a memory operand. /// Effectful: may mark the given input as used, when returning the register form. fn input_to_reg_mem>(ctx: &mut C, spec: InsnInput) -> RegMem { let inputs = ctx.get_input_as_source_or_const(spec.insn, spec.input); if let Some(c) = inputs.constant { // Generate constants fresh at each use to minimize long-range register pressure. let ty = ctx.input_ty(spec.insn, spec.input); return RegMem::reg(generate_constant(ctx, ty, c).only_reg().unwrap()); } if let InputSourceInst::UniqueUse(src_insn, 0) = inputs.inst { if let Some((addr_input, offset)) = is_mergeable_load(ctx, src_insn) { ctx.sink_inst(src_insn); let amode = lower_to_amode(ctx, addr_input, offset); return RegMem::mem(amode); } } RegMem::reg( ctx.put_input_in_regs(spec.insn, spec.input) .only_reg() .unwrap(), ) } /// An extension specification for `extend_input_to_reg`. #[derive(Clone, Copy)] enum ExtSpec { ZeroExtendTo32, ZeroExtendTo64, SignExtendTo32, #[allow(dead_code)] // not used just yet but may be used in the future! SignExtendTo64, } /// Put the given input into a register, marking it as used, and do a zero- or signed- extension if /// required. (This obviously causes side-effects.) fn extend_input_to_reg>( ctx: &mut C, spec: InsnInput, ext_spec: ExtSpec, ) -> Reg { let requested_size = match ext_spec { ExtSpec::ZeroExtendTo32 | ExtSpec::SignExtendTo32 => 32, ExtSpec::ZeroExtendTo64 | ExtSpec::SignExtendTo64 => 64, }; let input_size = ctx.input_ty(spec.insn, spec.input).bits(); let requested_ty = if requested_size == 32 { types::I32 } else { types::I64 }; let ext_mode = match (input_size, requested_size) { (a, b) if a == b => return put_input_in_reg(ctx, spec), (1, 8) => return put_input_in_reg(ctx, spec), (a, b) => ExtMode::new(a.try_into().unwrap(), b.try_into().unwrap()) .unwrap_or_else(|| panic!("invalid extension: {} -> {}", a, b)), }; let src = input_to_reg_mem(ctx, spec); let dst = ctx.alloc_tmp(requested_ty).only_reg().unwrap(); match ext_spec { ExtSpec::ZeroExtendTo32 | ExtSpec::ZeroExtendTo64 => { ctx.emit(Inst::movzx_rm_r(ext_mode, src, dst)) } ExtSpec::SignExtendTo32 | ExtSpec::SignExtendTo64 => { ctx.emit(Inst::movsx_rm_r(ext_mode, src, dst)) } } dst.to_reg() } /// Returns whether the given input is an immediate that can be properly sign-extended, without any /// possible side-effect. fn non_reg_input_to_sext_imm(input: NonRegInput, input_ty: Type) -> Option { input.constant.and_then(|x| { // For i64 instructions (prefixed with REX.W), require that the immediate will sign-extend // to 64 bits. For other sizes, it doesn't matter and we can just use the plain // constant. if input_ty.bytes() != 8 || low32_will_sign_extend_to_64(x) { Some(x as u32) } else { None } }) } fn input_to_imm>(ctx: &mut C, spec: InsnInput) -> Option { ctx.get_input_as_source_or_const(spec.insn, spec.input) .constant } /// Put the given input into an immediate, a register or a memory operand. /// Effectful: may mark the given input as used, when returning the register form. fn input_to_reg_mem_imm>(ctx: &mut C, spec: InsnInput) -> RegMemImm { let input = ctx.get_input_as_source_or_const(spec.insn, spec.input); let input_ty = ctx.input_ty(spec.insn, spec.input); match non_reg_input_to_sext_imm(input, input_ty) { Some(x) => RegMemImm::imm(x), None => match input_to_reg_mem(ctx, spec) { RegMem::Reg { reg } => RegMemImm::reg(reg), RegMem::Mem { addr } => RegMemImm::mem(addr), }, } } /// Emit an instruction to insert a value `src` into a lane of `dst`. fn emit_insert_lane>( ctx: &mut C, src: RegMem, dst: Writable, lane: u8, ty: Type, ) { if !ty.is_float() { let (sse_op, size) = match ty.lane_bits() { 8 => (SseOpcode::Pinsrb, OperandSize::Size32), 16 => (SseOpcode::Pinsrw, OperandSize::Size32), 32 => (SseOpcode::Pinsrd, OperandSize::Size32), 64 => (SseOpcode::Pinsrd, OperandSize::Size64), _ => panic!("Unable to insertlane for lane size: {}", ty.lane_bits()), }; ctx.emit(Inst::xmm_rm_r_imm(sse_op, src, dst, lane, size)); } else if ty == types::F32 { let sse_op = SseOpcode::Insertps; // Insert 32-bits from replacement (at index 00, bits 7:8) to vector (lane // shifted into bits 5:6). let lane = 0b00_00_00_00 | lane << 4; ctx.emit(Inst::xmm_rm_r_imm( sse_op, src, dst, lane, OperandSize::Size32, )); } else if ty == types::F64 { let sse_op = match lane { // Move the lowest quadword in replacement to vector without changing // the upper bits. 0 => SseOpcode::Movsd, // Move the low 64 bits of replacement vector to the high 64 bits of the // vector. 1 => SseOpcode::Movlhps, _ => unreachable!(), }; // Here we use the `xmm_rm_r` encoding because it correctly tells the register // allocator how we are using `dst`: we are using `dst` as a `mod` whereas other // encoding formats like `xmm_unary_rm_r` treat it as a `def`. ctx.emit(Inst::xmm_rm_r(sse_op, src, dst)); } else { panic!("unable to emit insertlane for type: {}", ty) } } /// Emit an instruction to extract a lane of `src` into `dst`. fn emit_extract_lane>( ctx: &mut C, src: Reg, dst: Writable, lane: u8, ty: Type, ) { if !ty.is_float() { let (sse_op, size) = match ty.lane_bits() { 8 => (SseOpcode::Pextrb, OperandSize::Size32), 16 => (SseOpcode::Pextrw, OperandSize::Size32), 32 => (SseOpcode::Pextrd, OperandSize::Size32), 64 => (SseOpcode::Pextrd, OperandSize::Size64), _ => panic!("Unable to extractlane for lane size: {}", ty.lane_bits()), }; let src = RegMem::reg(src); ctx.emit(Inst::xmm_rm_r_imm(sse_op, src, dst, lane, size)); } else if ty == types::F32 || ty == types::F64 { if lane == 0 { // Remove the extractlane instruction, leaving the float where it is. The upper // bits will remain unchanged; for correctness, this relies on Cranelift type // checking to avoid using those bits. ctx.emit(Inst::gen_move(dst, src, ty)); } else { // Otherwise, shuffle the bits in `lane` to the lowest lane. let sse_op = SseOpcode::Pshufd; let mask = match ty { // Move the value at `lane` to lane 0, copying existing value at lane 0 to // other lanes. Again, this relies on Cranelift type checking to avoid // using those bits. types::F32 => { assert!(lane > 0 && lane < 4); 0b00_00_00_00 | lane } // Move the value at `lane` 1 (we know it must be 1 because of the `if` // statement above) to lane 0 and leave lane 1 unchanged. The Cranelift type // checking assumption also applies here. types::F64 => { assert!(lane == 1); 0b11_10_11_10 } _ => unreachable!(), }; let src = RegMem::reg(src); ctx.emit(Inst::xmm_rm_r_imm( sse_op, src, dst, mask, OperandSize::Size32, )); } } else { panic!("unable to emit extractlane for type: {}", ty) } } /// Emits an int comparison instruction. /// /// Note: make sure that there are no instructions modifying the flags between a call to this /// function and the use of the flags! /// /// Takes the condition code that will be tested, and returns /// the condition code that should be used. This allows us to /// synthesize comparisons out of multiple instructions for /// special cases (e.g., 128-bit integers). fn emit_cmp>(ctx: &mut C, insn: IRInst, cc: IntCC) -> IntCC { let ty = ctx.input_ty(insn, 0); let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }]; if ty == types::I128 { // We need to compare both halves and combine the results appropriately. let cmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); let cmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); let lhs = put_input_in_regs(ctx, inputs[0]); let lhs_lo = lhs.regs()[0]; let lhs_hi = lhs.regs()[1]; let rhs = put_input_in_regs(ctx, inputs[1]); let rhs_lo = RegMemImm::reg(rhs.regs()[0]); let rhs_hi = RegMemImm::reg(rhs.regs()[1]); match cc { IntCC::Equal => { ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi)); ctx.emit(Inst::setcc(CC::Z, cmp1)); ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo)); ctx.emit(Inst::setcc(CC::Z, cmp2)); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::And, RegMemImm::reg(cmp1.to_reg()), cmp2, )); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::And, RegMemImm::imm(1), cmp2, )); IntCC::NotEqual } IntCC::NotEqual => { ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi)); ctx.emit(Inst::setcc(CC::NZ, cmp1)); ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo)); ctx.emit(Inst::setcc(CC::NZ, cmp2)); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::Or, RegMemImm::reg(cmp1.to_reg()), cmp2, )); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::And, RegMemImm::imm(1), cmp2, )); IntCC::NotEqual } IntCC::SignedLessThan | IntCC::SignedLessThanOrEqual | IntCC::SignedGreaterThan | IntCC::SignedGreaterThanOrEqual | IntCC::UnsignedLessThan | IntCC::UnsignedLessThanOrEqual | IntCC::UnsignedGreaterThan | IntCC::UnsignedGreaterThanOrEqual => { // Result = (lhs_hi <> rhs_hi) || // (lhs_hi == rhs_hi && lhs_lo <> rhs_lo) let cmp3 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi)); ctx.emit(Inst::setcc(CC::from_intcc(cc.without_equal()), cmp1)); ctx.emit(Inst::setcc(CC::Z, cmp2)); ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo)); ctx.emit(Inst::setcc(CC::from_intcc(cc.unsigned()), cmp3)); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::And, RegMemImm::reg(cmp2.to_reg()), cmp3, )); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::Or, RegMemImm::reg(cmp1.to_reg()), cmp3, )); ctx.emit(Inst::alu_rmi_r( OperandSize::Size64, AluRmiROpcode::And, RegMemImm::imm(1), cmp3, )); IntCC::NotEqual } _ => panic!("Unhandled IntCC in I128 comparison: {:?}", cc), } } else { // TODO Try to commute the operands (and invert the condition) if one is an immediate. let lhs = put_input_in_reg(ctx, inputs[0]); let rhs = input_to_reg_mem_imm(ctx, inputs[1]); // Cranelift's icmp semantics want to compare lhs - rhs, while Intel gives // us dst - src at the machine instruction level, so invert operands. ctx.emit(Inst::cmp_rmi_r(OperandSize::from_ty(ty), rhs, lhs)); cc } } /// A specification for a fcmp emission. enum FcmpSpec { /// Normal flow. Normal, /// Avoid emitting Equal at all costs by inverting it to NotEqual, and indicate when that /// happens with `InvertedEqualOrConditions`. /// /// This is useful in contexts where it is hard/inefficient to produce a single instruction (or /// sequence of instructions) that check for an "AND" combination of condition codes; see for /// instance lowering of Select. #[allow(dead_code)] InvertEqual, } /// This explains how to interpret the results of an fcmp instruction. enum FcmpCondResult { /// The given condition code must be set. Condition(CC), /// Both condition codes must be set. AndConditions(CC, CC), /// Either of the conditions codes must be set. OrConditions(CC, CC), /// The associated spec was set to `FcmpSpec::InvertEqual` and Equal has been inverted. Either /// of the condition codes must be set, and the user must invert meaning of analyzing the /// condition code results. When the spec is set to `FcmpSpec::Normal`, then this case can't be /// reached. InvertedEqualOrConditions(CC, CC), } /// Emits a float comparison instruction. /// /// Note: make sure that there are no instructions modifying the flags between a call to this /// function and the use of the flags! fn emit_fcmp>( ctx: &mut C, insn: IRInst, mut cond_code: FloatCC, spec: FcmpSpec, ) -> FcmpCondResult { let (flip_operands, inverted_equal) = match cond_code { FloatCC::LessThan | FloatCC::LessThanOrEqual | FloatCC::UnorderedOrGreaterThan | FloatCC::UnorderedOrGreaterThanOrEqual => { cond_code = cond_code.reverse(); (true, false) } FloatCC::Equal => { let inverted_equal = match spec { FcmpSpec::Normal => false, FcmpSpec::InvertEqual => { cond_code = FloatCC::NotEqual; // same as .inverse() true } }; (false, inverted_equal) } _ => (false, false), }; // The only valid CC constructed with `from_floatcc` can be put in the flag // register with a direct float comparison; do this here. let op = match ctx.input_ty(insn, 0) { types::F32 => SseOpcode::Ucomiss, types::F64 => SseOpcode::Ucomisd, _ => panic!("Bad input type to Fcmp"), }; let inputs = &[InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }]; let (lhs_input, rhs_input) = if flip_operands { (inputs[1], inputs[0]) } else { (inputs[0], inputs[1]) }; let lhs = put_input_in_reg(ctx, lhs_input); let rhs = input_to_reg_mem(ctx, rhs_input); ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs)); let cond_result = match cond_code { FloatCC::Equal => FcmpCondResult::AndConditions(CC::NP, CC::Z), FloatCC::NotEqual if inverted_equal => { FcmpCondResult::InvertedEqualOrConditions(CC::P, CC::NZ) } FloatCC::NotEqual if !inverted_equal => FcmpCondResult::OrConditions(CC::P, CC::NZ), _ => FcmpCondResult::Condition(CC::from_floatcc(cond_code)), }; cond_result } fn make_libcall_sig>( ctx: &mut C, insn: IRInst, call_conv: CallConv, ptr_ty: Type, ) -> Signature { let mut sig = Signature::new(call_conv); for i in 0..ctx.num_inputs(insn) { sig.params.push(AbiParam::new(ctx.input_ty(insn, i))); } for i in 0..ctx.num_outputs(insn) { sig.returns.push(AbiParam::new(ctx.output_ty(insn, i))); } if call_conv.extends_baldrdash() { // Adds the special VMContext parameter to the signature. sig.params .push(AbiParam::special(ptr_ty, ArgumentPurpose::VMContext)); } sig } fn emit_vm_call>( ctx: &mut C, flags: &Flags, triple: &Triple, libcall: LibCall, insn: IRInst, inputs: SmallVec<[InsnInput; 4]>, outputs: SmallVec<[InsnOutput; 2]>, ) -> CodegenResult<()> { let extname = ExternalName::LibCall(libcall); let dist = if flags.use_colocated_libcalls() { RelocDistance::Near } else { RelocDistance::Far }; // TODO avoid recreating signatures for every single Libcall function. let call_conv = CallConv::for_libcall(flags, CallConv::triple_default(triple)); let sig = make_libcall_sig(ctx, insn, call_conv, types::I64); let caller_conv = ctx.abi().call_conv(); let mut abi = X64ABICaller::from_func(&sig, &extname, dist, caller_conv, flags)?; abi.emit_stack_pre_adjust(ctx); let vm_context = if call_conv.extends_baldrdash() { 1 } else { 0 }; assert_eq!(inputs.len() + vm_context, abi.num_args()); for (i, input) in inputs.iter().enumerate() { let arg_reg = put_input_in_reg(ctx, *input); abi.emit_copy_regs_to_arg(ctx, i, ValueRegs::one(arg_reg)); } if call_conv.extends_baldrdash() { let vm_context_vreg = ctx .get_vm_context() .expect("should have a VMContext to pass to libcall funcs"); abi.emit_copy_regs_to_arg(ctx, inputs.len(), ValueRegs::one(vm_context_vreg)); } abi.emit_call(ctx); for (i, output) in outputs.iter().enumerate() { let retval_reg = get_output_reg(ctx, *output).only_reg().unwrap(); abi.emit_copy_retval_to_regs(ctx, i, ValueRegs::one(retval_reg)); } abi.emit_stack_post_adjust(ctx); Ok(()) } /// Returns whether the given input is a shift by a constant value less or equal than 3. /// The goal is to embed it within an address mode. fn matches_small_constant_shift>( ctx: &mut C, spec: InsnInput, ) -> Option<(InsnInput, u8)> { matches_input(ctx, spec, Opcode::Ishl).and_then(|shift| { match input_to_imm( ctx, InsnInput { insn: shift, input: 1, }, ) { Some(shift_amt) if shift_amt <= 3 => Some(( InsnInput { insn: shift, input: 0, }, shift_amt as u8, )), _ => None, } }) } /// Lowers an instruction to one of the x86 addressing modes. /// /// Note: the 32-bit offset in Cranelift has to be sign-extended, which maps x86's behavior. fn lower_to_amode>(ctx: &mut C, spec: InsnInput, offset: i32) -> Amode { let flags = ctx .memflags(spec.insn) .expect("Instruction with amode should have memflags"); // We now either have an add that we must materialize, or some other input; as well as the // final offset. if let Some(add) = matches_input(ctx, spec, Opcode::Iadd) { debug_assert_eq!(ctx.output_ty(add, 0), types::I64); let add_inputs = &[ InsnInput { insn: add, input: 0, }, InsnInput { insn: add, input: 1, }, ]; // TODO heap_addr legalization generates a uext64 *after* the shift, so these optimizations // aren't happening in the wasm case. We could do better, given some range analysis. let (base, index, shift) = if let Some((shift_input, shift_amt)) = matches_small_constant_shift(ctx, add_inputs[0]) { ( put_input_in_reg(ctx, add_inputs[1]), put_input_in_reg(ctx, shift_input), shift_amt, ) } else if let Some((shift_input, shift_amt)) = matches_small_constant_shift(ctx, add_inputs[1]) { ( put_input_in_reg(ctx, add_inputs[0]), put_input_in_reg(ctx, shift_input), shift_amt, ) } else { for i in 0..=1 { // Try to pierce through uextend. if let Some(uextend) = matches_input( ctx, InsnInput { insn: add, input: i, }, Opcode::Uextend, ) { if let Some(cst) = ctx.get_input_as_source_or_const(uextend, 0).constant { // Zero the upper bits. let input_size = ctx.input_ty(uextend, 0).bits() as u64; let shift: u64 = 64 - input_size; let uext_cst: u64 = (cst << shift) >> shift; let final_offset = (offset as i64).wrapping_add(uext_cst as i64); if low32_will_sign_extend_to_64(final_offset as u64) { let base = put_input_in_reg(ctx, add_inputs[1 - i]); return Amode::imm_reg(final_offset as u32, base).with_flags(flags); } } } // If it's a constant, add it directly! if let Some(cst) = ctx.get_input_as_source_or_const(add, i).constant { let final_offset = (offset as i64).wrapping_add(cst as i64); if low32_will_sign_extend_to_64(final_offset as u64) { let base = put_input_in_reg(ctx, add_inputs[1 - i]); return Amode::imm_reg(final_offset as u32, base).with_flags(flags); } } } ( put_input_in_reg(ctx, add_inputs[0]), put_input_in_reg(ctx, add_inputs[1]), 0, ) }; return Amode::imm_reg_reg_shift( offset as u32, Gpr::new(base).unwrap(), Gpr::new(index).unwrap(), shift, ) .with_flags(flags); } let input = put_input_in_reg(ctx, spec); Amode::imm_reg(offset as u32, input).with_flags(flags) } fn emit_moves>( ctx: &mut C, dst: ValueRegs>, src: ValueRegs, ty: Type, ) { let (_, tys) = Inst::rc_for_type(ty).unwrap(); for ((dst, src), ty) in dst.regs().iter().zip(src.regs().iter()).zip(tys.iter()) { ctx.emit(Inst::gen_move(*dst, *src, *ty)); } } fn emit_cmoves>( ctx: &mut C, size: u8, cc: CC, src: ValueRegs, dst: ValueRegs>, ) { let size = size / src.len() as u8; let size = u8::max(size, 4); // at least 32 bits for (dst, src) in dst.regs().iter().zip(src.regs().iter()) { ctx.emit(Inst::cmove( OperandSize::from_bytes(size.into()), cc, RegMem::reg(*src), *dst, )); } } //============================================================================= // Top-level instruction lowering entry point, for one instruction. /// Actually codegen an instruction's results into registers. fn lower_insn_to_regs>( ctx: &mut C, insn: IRInst, flags: &Flags, isa_flags: &x64_settings::Flags, triple: &Triple, ) -> CodegenResult<()> { let op = ctx.data(insn).opcode(); let inputs: SmallVec<[InsnInput; 4]> = (0..ctx.num_inputs(insn)) .map(|i| InsnInput { insn, input: i }) .collect(); let outputs: SmallVec<[InsnOutput; 2]> = (0..ctx.num_outputs(insn)) .map(|i| InsnOutput { insn, output: i }) .collect(); let ty = if outputs.len() > 0 { Some(ctx.output_ty(insn, 0)) } else { None }; if let Ok(()) = isle::lower(ctx, flags, isa_flags, &outputs, insn) { return Ok(()); } let implemented_in_isle = |ctx: &mut C| { unreachable!( "implemented in ISLE: inst = `{}`, type = `{:?}`", ctx.dfg().display_inst(insn), ty ) }; match op { Opcode::Iconst | Opcode::Bconst | Opcode::F32const | Opcode::F64const | Opcode::Null | Opcode::Iadd | Opcode::IaddIfcout | Opcode::SaddSat | Opcode::UaddSat | Opcode::Isub | Opcode::SsubSat | Opcode::UsubSat | Opcode::AvgRound | Opcode::Band | Opcode::Bor | Opcode::Bxor | Opcode::Imul | Opcode::BandNot | Opcode::Iabs | Opcode::Imax | Opcode::Umax | Opcode::Imin | Opcode::Umin | Opcode::Bnot | Opcode::Bitselect | Opcode::Vselect | Opcode::Ushr | Opcode::Sshr | Opcode::Ishl | Opcode::Rotl | Opcode::Rotr | Opcode::Ineg | Opcode::Trap | Opcode::ResumableTrap | Opcode::Clz | Opcode::Ctz | Opcode::Popcnt | Opcode::Bitrev | Opcode::IsNull | Opcode::IsInvalid | Opcode::Uextend | Opcode::Sextend | Opcode::Breduce | Opcode::Bextend | Opcode::Ireduce | Opcode::Bint | Opcode::Debugtrap | Opcode::WideningPairwiseDotProductS | Opcode::Fadd | Opcode::Fsub | Opcode::Fmul | Opcode::Fdiv | Opcode::Fmin | Opcode::Fmax | Opcode::FminPseudo | Opcode::FmaxPseudo | Opcode::Sqrt | Opcode::Fpromote | Opcode::FvpromoteLow | Opcode::Fdemote | Opcode::Fvdemote | Opcode::Icmp | Opcode::Fcmp | Opcode::Load | Opcode::Uload8 | Opcode::Sload8 | Opcode::Uload16 | Opcode::Sload16 | Opcode::Uload32 | Opcode::Sload32 | Opcode::Sload8x8 | Opcode::Uload8x8 | Opcode::Sload16x4 | Opcode::Uload16x4 | Opcode::Sload32x2 | Opcode::Uload32x2 | Opcode::Store | Opcode::Istore8 | Opcode::Istore16 | Opcode::Istore32 | Opcode::AtomicRmw | Opcode::AtomicCas | Opcode::AtomicLoad | Opcode::AtomicStore | Opcode::Fence | Opcode::FuncAddr | Opcode::SymbolValue | Opcode::FallthroughReturn | Opcode::Return => { implemented_in_isle(ctx); } Opcode::Call | Opcode::CallIndirect => { let caller_conv = ctx.abi().call_conv(); let (mut abi, inputs) = match op { Opcode::Call => { let (extname, dist) = ctx.call_target(insn).unwrap(); let sig = ctx.call_sig(insn).unwrap(); assert_eq!(inputs.len(), sig.params.len()); assert_eq!(outputs.len(), sig.returns.len()); ( X64ABICaller::from_func(sig, &extname, dist, caller_conv, flags)?, &inputs[..], ) } Opcode::CallIndirect => { let ptr = put_input_in_reg(ctx, inputs[0]); let sig = ctx.call_sig(insn).unwrap(); assert_eq!(inputs.len() - 1, sig.params.len()); assert_eq!(outputs.len(), sig.returns.len()); ( X64ABICaller::from_ptr(sig, ptr, op, caller_conv, flags)?, &inputs[1..], ) } _ => unreachable!(), }; abi.emit_stack_pre_adjust(ctx); assert_eq!(inputs.len(), abi.num_args()); for i in abi.get_copy_to_arg_order() { let input = inputs[i]; let arg_regs = put_input_in_regs(ctx, input); abi.emit_copy_regs_to_arg(ctx, i, arg_regs); } abi.emit_call(ctx); for (i, output) in outputs.iter().enumerate() { let retval_regs = get_output_reg(ctx, *output); abi.emit_copy_retval_to_regs(ctx, i, retval_regs); } abi.emit_stack_post_adjust(ctx); } Opcode::Trapif | Opcode::Trapff => { let trap_code = ctx.data(insn).trap_code().unwrap(); if matches_input(ctx, inputs[0], Opcode::IaddIfcout).is_some() { let cond_code = ctx.data(insn).cond_code().unwrap(); // The flags must not have been clobbered by any other instruction between the // iadd_ifcout and this instruction, as verified by the CLIF validator; so we can // simply use the flags here. let cc = CC::from_intcc(cond_code); ctx.emit(Inst::TrapIf { trap_code, cc }); } else if op == Opcode::Trapif { let cond_code = ctx.data(insn).cond_code().unwrap(); // Verification ensures that the input is always a single-def ifcmp. let ifcmp = matches_input(ctx, inputs[0], Opcode::Ifcmp).unwrap(); let cond_code = emit_cmp(ctx, ifcmp, cond_code); let cc = CC::from_intcc(cond_code); ctx.emit(Inst::TrapIf { trap_code, cc }); } else { let cond_code = ctx.data(insn).fp_cond_code().unwrap(); // Verification ensures that the input is always a single-def ffcmp. let ffcmp = matches_input(ctx, inputs[0], Opcode::Ffcmp).unwrap(); match emit_fcmp(ctx, ffcmp, cond_code, FcmpSpec::Normal) { FcmpCondResult::Condition(cc) => ctx.emit(Inst::TrapIf { trap_code, cc }), FcmpCondResult::AndConditions(cc1, cc2) => { // A bit unfortunate, but materialize the flags in their own register, and // check against this. let tmp = ctx.alloc_tmp(types::I32).only_reg().unwrap(); let tmp2 = ctx.alloc_tmp(types::I32).only_reg().unwrap(); ctx.emit(Inst::setcc(cc1, tmp)); ctx.emit(Inst::setcc(cc2, tmp2)); ctx.emit(Inst::alu_rmi_r( OperandSize::Size32, AluRmiROpcode::And, RegMemImm::reg(tmp.to_reg()), tmp2, )); ctx.emit(Inst::TrapIf { trap_code, cc: CC::NZ, }); } FcmpCondResult::OrConditions(cc1, cc2) => { ctx.emit(Inst::TrapIf { trap_code, cc: cc1 }); ctx.emit(Inst::TrapIf { trap_code, cc: cc2 }); } FcmpCondResult::InvertedEqualOrConditions(_, _) => unreachable!(), }; }; } Opcode::FcvtFromSint => { let output_ty = ty.unwrap(); if !output_ty.is_vector() { let (ext_spec, src_size) = match ctx.input_ty(insn, 0) { types::I8 | types::I16 => (Some(ExtSpec::SignExtendTo32), OperandSize::Size32), types::I32 => (None, OperandSize::Size32), types::I64 => (None, OperandSize::Size64), _ => unreachable!(), }; let src = match ext_spec { Some(ext_spec) => RegMem::reg(extend_input_to_reg(ctx, inputs[0], ext_spec)), None => RegMem::reg(put_input_in_reg(ctx, inputs[0])), }; let opcode = if output_ty == types::F32 { SseOpcode::Cvtsi2ss } else { assert_eq!(output_ty, types::F64); SseOpcode::Cvtsi2sd }; let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gpr_to_xmm(opcode, src, src_size, dst)); } else { let ty = ty.unwrap(); let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let opcode = match ctx.input_ty(insn, 0) { types::I32X4 => SseOpcode::Cvtdq2ps, _ => { unimplemented!("unable to use type {} for op {}", ctx.input_ty(insn, 0), op) } }; ctx.emit(Inst::gen_move(dst, src, ty)); ctx.emit(Inst::xmm_rm_r(opcode, RegMem::from(dst), dst)); } } Opcode::FcvtLowFromSint => { let src = RegMem::reg(put_input_in_reg(ctx, inputs[0])); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::xmm_unary_rm_r( SseOpcode::Cvtdq2pd, RegMem::from(src), dst, )); } Opcode::FcvtFromUint => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let ty = ty.unwrap(); let input_ty = ctx.input_ty(insn, 0); let output_ty = ctx.output_ty(insn, 0); if !ty.is_vector() { match input_ty { types::I8 | types::I16 | types::I32 => { // Conversion from an unsigned int smaller than 64-bit is easy: zero-extend + // do a signed conversion (which won't overflow). let opcode = if ty == types::F32 { SseOpcode::Cvtsi2ss } else { assert_eq!(ty, types::F64); SseOpcode::Cvtsi2sd }; let src = RegMem::reg(extend_input_to_reg( ctx, inputs[0], ExtSpec::ZeroExtendTo64, )); ctx.emit(Inst::gpr_to_xmm(opcode, src, OperandSize::Size64, dst)); } types::I64 => { let src = put_input_in_reg(ctx, inputs[0]); let src_copy = ctx.alloc_tmp(types::I64).only_reg().unwrap(); ctx.emit(Inst::gen_move(src_copy, src, types::I64)); let tmp_gpr1 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); let tmp_gpr2 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); ctx.emit(Inst::cvt_u64_to_float_seq( if ty == types::F64 { OperandSize::Size64 } else { OperandSize::Size32 }, src_copy, tmp_gpr1, tmp_gpr2, dst, )); } _ => panic!("unexpected input type for FcvtFromUint: {:?}", input_ty), }; } else if output_ty == types::F64X2 { if let Some(uwiden) = matches_input(ctx, inputs[0], Opcode::UwidenLow) { let uwiden_input = InsnInput { insn: uwiden, input: 0, }; let src = put_input_in_reg(ctx, uwiden_input); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let input_ty = ctx.input_ty(uwiden, 0); // Matches_input further obfuscates which Wasm instruction this is ultimately // lowering. Check here that the types are as expected for F64x2ConvertLowI32x4U. debug_assert!(input_ty == types::I32X4); // Algorithm uses unpcklps to help create a float that is equivalent // 0x1.0p52 + double(src). 0x1.0p52 is unique because at this exponent // every value of the mantissa represents a corresponding uint32 number. // When we subtract 0x1.0p52 we are left with double(src). let uint_mask = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); ctx.emit(Inst::gen_move(dst, src, types::I32X4)); static UINT_MASK: [u8; 16] = [ 0x00, 0x00, 0x30, 0x43, 0x00, 0x00, 0x30, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, ]; let uint_mask_const = ctx.use_constant(VCodeConstantData::WellKnown(&UINT_MASK)); ctx.emit(Inst::xmm_load_const( uint_mask_const, uint_mask, types::I32X4, )); // Creates 0x1.0p52 + double(src) ctx.emit(Inst::xmm_rm_r( SseOpcode::Unpcklps, RegMem::from(uint_mask), dst, )); static UINT_MASK_HIGH: [u8; 16] = [ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x43, ]; let uint_mask_high_const = ctx.use_constant(VCodeConstantData::WellKnown(&UINT_MASK_HIGH)); let uint_mask_high = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const( uint_mask_high_const, uint_mask_high, types::I32X4, )); // 0x1.0p52 + double(src) - 0x1.0p52 ctx.emit(Inst::xmm_rm_r( SseOpcode::Subpd, RegMem::from(uint_mask_high), dst, )); } else { panic!("Unsupported FcvtFromUint conversion types: {}", ty); } } else { assert_eq!(ctx.input_ty(insn, 0), types::I32X4); let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); if isa_flags.use_avx512vl_simd() && isa_flags.use_avx512f_simd() { // When AVX512VL and AVX512F are available, // `fcvt_from_uint` can be lowered to a single instruction. ctx.emit(Inst::xmm_unary_rm_r_evex( Avx512Opcode::Vcvtudq2ps, RegMem::reg(src), dst, )); } else { // Converting packed unsigned integers to packed floats // requires a few steps. There is no single instruction // lowering for converting unsigned floats but there is for // converting packed signed integers to float (cvtdq2ps). In // the steps below we isolate the upper half (16 bits) and // lower half (16 bits) of each lane and then we convert // each half separately using cvtdq2ps meant for signed // integers. In order for this to work for the upper half // bits we must shift right by 1 (divide by 2) these bits in // order to ensure the most significant bit is 0 not signed, // and then after the conversion we double the value. // Finally we add the converted values where addition will // correctly round. // // Sequence: // -> A = 0xffffffff // -> Ah = 0xffff0000 // -> Al = 0x0000ffff // -> Convert(Al) // Convert int to float // -> Ah = Ah >> 1 // Shift right 1 to assure Ah conversion isn't treated as signed // -> Convert(Ah) // Convert .. with no loss of significant digits from previous shift // -> Ah = Ah + Ah // Double Ah to account for shift right before the conversion. // -> dst = Ah + Al // Add the two floats together // Create a temporary register let tmp = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); ctx.emit(Inst::xmm_unary_rm_r( SseOpcode::Movapd, RegMem::reg(src), tmp, )); ctx.emit(Inst::gen_move(dst, src, ty)); // Get the low 16 bits ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Pslld, RegMemImm::imm(16), tmp)); ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrld, RegMemImm::imm(16), tmp)); // Get the high 16 bits ctx.emit(Inst::xmm_rm_r(SseOpcode::Psubd, RegMem::from(tmp), dst)); // Convert the low 16 bits ctx.emit(Inst::xmm_rm_r(SseOpcode::Cvtdq2ps, RegMem::from(tmp), tmp)); // Shift the high bits by 1, convert, and double to get the correct value. ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrld, RegMemImm::imm(1), dst)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Cvtdq2ps, RegMem::from(dst), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Addps, RegMem::reg(dst.to_reg()), dst, )); // Add together the two converted values. ctx.emit(Inst::xmm_rm_r( SseOpcode::Addps, RegMem::reg(tmp.to_reg()), dst, )); } } } Opcode::FcvtToUint | Opcode::FcvtToUintSat | Opcode::FcvtToSint | Opcode::FcvtToSintSat => { let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let input_ty = ctx.input_ty(insn, 0); if !input_ty.is_vector() { let src_size = if input_ty == types::F32 { OperandSize::Size32 } else { assert_eq!(input_ty, types::F64); OperandSize::Size64 }; let output_ty = ty.unwrap(); let dst_size = if output_ty == types::I32 { OperandSize::Size32 } else { assert_eq!(output_ty, types::I64); OperandSize::Size64 }; let to_signed = op == Opcode::FcvtToSint || op == Opcode::FcvtToSintSat; let is_sat = op == Opcode::FcvtToUintSat || op == Opcode::FcvtToSintSat; let src_copy = ctx.alloc_tmp(input_ty).only_reg().unwrap(); ctx.emit(Inst::gen_move(src_copy, src, input_ty)); let tmp_xmm = ctx.alloc_tmp(input_ty).only_reg().unwrap(); let tmp_gpr = ctx.alloc_tmp(output_ty).only_reg().unwrap(); if to_signed { ctx.emit(Inst::cvt_float_to_sint_seq( src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm, )); } else { ctx.emit(Inst::cvt_float_to_uint_seq( src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm, )); } } else { if op == Opcode::FcvtToSintSat { // Sets destination to zero if float is NaN assert_eq!(types::F32X4, ctx.input_ty(insn, 0)); let tmp = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); ctx.emit(Inst::xmm_unary_rm_r( SseOpcode::Movapd, RegMem::reg(src), tmp, )); ctx.emit(Inst::gen_move(dst, src, input_ty)); let cond = FcmpImm::from(FloatCC::Equal); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Cmpps, RegMem::reg(tmp.to_reg()), tmp, cond.encode(), OperandSize::Size32, )); ctx.emit(Inst::xmm_rm_r( SseOpcode::Andps, RegMem::reg(tmp.to_reg()), dst, )); // Sets top bit of tmp if float is positive // Setting up to set top bit on negative float values ctx.emit(Inst::xmm_rm_r( SseOpcode::Pxor, RegMem::reg(dst.to_reg()), tmp, )); // Convert the packed float to packed doubleword. ctx.emit(Inst::xmm_rm_r( SseOpcode::Cvttps2dq, RegMem::reg(dst.to_reg()), dst, )); // Set top bit only if < 0 // Saturate lane with sign (top) bit. ctx.emit(Inst::xmm_rm_r( SseOpcode::Pand, RegMem::reg(dst.to_reg()), tmp, )); ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrad, RegMemImm::imm(31), tmp)); // On overflow 0x80000000 is returned to a lane. // Below sets positive overflow lanes to 0x7FFFFFFF // Keeps negative overflow lanes as is. ctx.emit(Inst::xmm_rm_r( SseOpcode::Pxor, RegMem::reg(tmp.to_reg()), dst, )); } else if op == Opcode::FcvtToUintSat { // The algorithm for converting floats to unsigned ints is a little tricky. The // complication arises because we are converting from a signed 64-bit int with a positive // integer range from 1..INT_MAX (0x1..0x7FFFFFFF) to an unsigned integer with an extended // range from (INT_MAX+1)..UINT_MAX. It's this range from (INT_MAX+1)..UINT_MAX // (0x80000000..0xFFFFFFFF) that needs to be accounted for as a special case since our // conversion instruction (cvttps2dq) only converts as high as INT_MAX (0x7FFFFFFF), but // which conveniently setting underflows and overflows (smaller than MIN_INT or larger than // MAX_INT) to be INT_MAX+1 (0x80000000). Nothing that the range (INT_MAX+1)..UINT_MAX includes // precisely INT_MAX values we can correctly account for and convert every value in this range // if we simply subtract INT_MAX+1 before doing the cvttps2dq conversion. After the subtraction // every value originally (INT_MAX+1)..UINT_MAX is now the range (0..INT_MAX). // After the conversion we add INT_MAX+1 back to this converted value, noting again that // values we are trying to account for were already set to INT_MAX+1 during the original conversion. // We simply have to create a mask and make sure we are adding together only the lanes that need // to be accounted for. Digesting it all the steps then are: // // Step 1 - Account for NaN and negative floats by setting these src values to zero. // Step 2 - Make a copy (tmp1) of the src value since we need to convert twice for // reasons described above. // Step 3 - Convert the original src values. This will convert properly all floats up to INT_MAX // Step 4 - Subtract INT_MAX from the copy set (tmp1). Note, all zero and negative values are those // values that were originally in the range (0..INT_MAX). This will come in handy during // step 7 when we zero negative lanes. // Step 5 - Create a bit mask for tmp1 that will correspond to all lanes originally less than // UINT_MAX that are now less than INT_MAX thanks to the subtraction. // Step 6 - Convert the second set of values (tmp1) // Step 7 - Prep the converted second set by zeroing out negative lanes (these have already been // converted correctly with the first set) and by setting overflow lanes to 0x7FFFFFFF // as this will allow us to properly saturate overflow lanes when adding to 0x80000000 // Step 8 - Add the orginal converted src and the converted tmp1 where float values originally less // than and equal to INT_MAX will be unchanged, float values originally between INT_MAX+1 and // UINT_MAX will add together (INT_MAX) + (SRC - INT_MAX), and float values originally // greater than UINT_MAX will be saturated to UINT_MAX (0xFFFFFFFF) after adding (0x8000000 + 0x7FFFFFFF). // // // The table below illustrates the result after each step where it matters for the converted set. // Note the original value range (original src set) is the final dst in Step 8: // // Original src set: // | Original Value Range | Step 1 | Step 3 | Step 8 | // | -FLT_MIN..FLT_MAX | 0.0..FLT_MAX | 0..INT_MAX(w/overflow) | 0..UINT_MAX(w/saturation) | // // Copied src set (tmp1): // | Step 2 | Step 4 | // | 0.0..FLT_MAX | (0.0-(INT_MAX+1))..(FLT_MAX-(INT_MAX+1)) | // // | Step 6 | Step 7 | // | (0-(INT_MAX+1))..(UINT_MAX-(INT_MAX+1))(w/overflow) | ((INT_MAX+1)-(INT_MAX+1))..(INT_MAX+1) | // Create temporaries assert_eq!(types::F32X4, ctx.input_ty(insn, 0)); let tmp1 = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); let tmp2 = ctx.alloc_tmp(types::I32X4).only_reg().unwrap(); // Converting to unsigned int so if float src is negative or NaN // will first set to zero. ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp2)); ctx.emit(Inst::gen_move(dst, src, input_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Maxps, RegMem::from(tmp2), dst)); // Set tmp2 to INT_MAX+1. It is important to note here that after it looks // like we are only converting INT_MAX (0x7FFFFFFF) but in fact because // single precision IEEE-754 floats can only accurately represent contingous // integers up to 2^23 and outside of this range it rounds to the closest // integer that it can represent. In the case of INT_MAX, this value gets // represented as 0x4f000000 which is the integer value (INT_MAX+1). ctx.emit(Inst::xmm_rm_r(SseOpcode::Pcmpeqd, RegMem::from(tmp2), tmp2)); ctx.emit(Inst::xmm_rmi_reg(SseOpcode::Psrld, RegMemImm::imm(1), tmp2)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Cvtdq2ps, RegMem::from(tmp2), tmp2, )); // Make a copy of these lanes and then do the first conversion. // Overflow lanes greater than the maximum allowed signed value will // set to 0x80000000. Negative and NaN lanes will be 0x0 ctx.emit(Inst::xmm_mov(SseOpcode::Movaps, RegMem::from(dst), tmp1)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Cvttps2dq, RegMem::from(dst), dst)); // Set lanes to src - max_signed_int ctx.emit(Inst::xmm_rm_r(SseOpcode::Subps, RegMem::from(tmp2), tmp1)); // Create mask for all positive lanes to saturate (i.e. greater than // or equal to the maxmimum allowable unsigned int). let cond = FcmpImm::from(FloatCC::LessThanOrEqual); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Cmpps, RegMem::from(tmp1), tmp2, cond.encode(), OperandSize::Size32, )); // Convert those set of lanes that have the max_signed_int factored out. ctx.emit(Inst::xmm_rm_r( SseOpcode::Cvttps2dq, RegMem::from(tmp1), tmp1, )); // Prepare converted lanes by zeroing negative lanes and prepping lanes // that have positive overflow (based on the mask) by setting these lanes // to 0x7FFFFFFF ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp1)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp2), tmp2)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmaxsd, RegMem::from(tmp2), tmp1)); // Add this second set of converted lanes to the original to properly handle // values greater than max signed int. ctx.emit(Inst::xmm_rm_r(SseOpcode::Paddd, RegMem::from(tmp1), dst)); } else { // Since this branch is also guarded by a check for vector types // neither Opcode::FcvtToUint nor Opcode::FcvtToSint can reach here // due to vector varients not existing. The first two branches will // cover all reachable cases. unreachable!(); } } } Opcode::IaddPairwise => { if let (Some(swiden_low), Some(swiden_high)) = ( matches_input(ctx, inputs[0], Opcode::SwidenLow), matches_input(ctx, inputs[1], Opcode::SwidenHigh), ) { let swiden_input = &[ InsnInput { insn: swiden_low, input: 0, }, InsnInput { insn: swiden_high, input: 0, }, ]; let input_ty = ctx.input_ty(swiden_low, 0); let output_ty = ctx.output_ty(insn, 0); let src0 = put_input_in_reg(ctx, swiden_input[0]); let src1 = put_input_in_reg(ctx, swiden_input[1]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); if src0 != src1 { unimplemented!( "iadd_pairwise not implemented for general case with different inputs" ); } match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { static MUL_CONST: [u8; 16] = [0x01; 16]; let mul_const = ctx.use_constant(VCodeConstantData::WellKnown(&MUL_CONST)); let mul_const_reg = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(mul_const, mul_const_reg, types::I8X16)); ctx.emit(Inst::xmm_mov( SseOpcode::Movdqa, RegMem::reg(mul_const_reg.to_reg()), dst, )); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmaddubsw, RegMem::reg(src0), dst)); } (types::I16X8, types::I32X4) => { static MUL_CONST: [u8; 16] = [ 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, ]; let mul_const = ctx.use_constant(VCodeConstantData::WellKnown(&MUL_CONST)); let mul_const_reg = ctx.alloc_tmp(types::I16X8).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(mul_const, mul_const_reg, types::I16X8)); ctx.emit(Inst::xmm_mov(SseOpcode::Movdqa, RegMem::reg(src0), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pmaddwd, RegMem::reg(mul_const_reg.to_reg()), dst, )); } _ => { unimplemented!("Type not supported for {:?}", op); } } } else if let (Some(uwiden_low), Some(uwiden_high)) = ( matches_input(ctx, inputs[0], Opcode::UwidenLow), matches_input(ctx, inputs[1], Opcode::UwidenHigh), ) { let uwiden_input = &[ InsnInput { insn: uwiden_low, input: 0, }, InsnInput { insn: uwiden_high, input: 0, }, ]; let input_ty = ctx.input_ty(uwiden_low, 0); let output_ty = ctx.output_ty(insn, 0); let src0 = put_input_in_reg(ctx, uwiden_input[0]); let src1 = put_input_in_reg(ctx, uwiden_input[1]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); if src0 != src1 { unimplemented!( "iadd_pairwise not implemented for general case with different inputs" ); } match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { static MUL_CONST: [u8; 16] = [0x01; 16]; let mul_const = ctx.use_constant(VCodeConstantData::WellKnown(&MUL_CONST)); let mul_const_reg = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(mul_const, mul_const_reg, types::I8X16)); ctx.emit(Inst::xmm_mov(SseOpcode::Movdqa, RegMem::reg(src0), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pmaddubsw, RegMem::reg(mul_const_reg.to_reg()), dst, )); } (types::I16X8, types::I32X4) => { static PXOR_CONST: [u8; 16] = [ 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, ]; let pxor_const = ctx.use_constant(VCodeConstantData::WellKnown(&PXOR_CONST)); let pxor_const_reg = ctx.alloc_tmp(types::I16X8).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const( pxor_const, pxor_const_reg, types::I16X8, )); ctx.emit(Inst::xmm_mov(SseOpcode::Movdqa, RegMem::reg(src0), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pxor, RegMem::reg(pxor_const_reg.to_reg()), dst, )); static MADD_CONST: [u8; 16] = [ 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, ]; let madd_const = ctx.use_constant(VCodeConstantData::WellKnown(&MADD_CONST)); let madd_const_reg = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const( madd_const, madd_const_reg, types::I16X8, )); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pmaddwd, RegMem::reg(madd_const_reg.to_reg()), dst, )); static ADDD_CONST2: [u8; 16] = [ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, ]; let addd_const2 = ctx.use_constant(VCodeConstantData::WellKnown(&ADDD_CONST2)); let addd_const2_reg = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const( addd_const2, addd_const2_reg, types::I16X8, )); ctx.emit(Inst::xmm_rm_r( SseOpcode::Paddd, RegMem::reg(addd_const2_reg.to_reg()), dst, )); } _ => { unimplemented!("Type not supported for {:?}", op); } } } else { unimplemented!("Operands not supported for {:?}", op); } } Opcode::UwidenHigh | Opcode::UwidenLow | Opcode::SwidenHigh | Opcode::SwidenLow => { let input_ty = ctx.input_ty(insn, 0); let output_ty = ctx.output_ty(insn, 0); let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); if output_ty.is_vector() { match op { Opcode::SwidenLow => match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxbw, RegMem::reg(src), dst)); } (types::I16X8, types::I32X4) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxwd, RegMem::reg(src), dst)); } (types::I32X4, types::I64X2) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxdq, RegMem::reg(src), dst)); } _ => unreachable!(), }, Opcode::SwidenHigh => match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { ctx.emit(Inst::gen_move(dst, src, output_ty)); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Palignr, RegMem::reg(src), dst, 8, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxbw, RegMem::from(dst), dst)); } (types::I16X8, types::I32X4) => { ctx.emit(Inst::gen_move(dst, src, output_ty)); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Palignr, RegMem::reg(src), dst, 8, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxwd, RegMem::from(dst), dst)); } (types::I32X4, types::I64X2) => { ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Pshufd, RegMem::reg(src), dst, 0xEE, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovsxdq, RegMem::from(dst), dst)); } _ => unreachable!(), }, Opcode::UwidenLow => match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxbw, RegMem::reg(src), dst)); } (types::I16X8, types::I32X4) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxwd, RegMem::reg(src), dst)); } (types::I32X4, types::I64X2) => { ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxdq, RegMem::reg(src), dst)); } _ => unreachable!(), }, Opcode::UwidenHigh => match (input_ty, output_ty) { (types::I8X16, types::I16X8) => { ctx.emit(Inst::gen_move(dst, src, output_ty)); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Palignr, RegMem::reg(src), dst, 8, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxbw, RegMem::from(dst), dst)); } (types::I16X8, types::I32X4) => { ctx.emit(Inst::gen_move(dst, src, output_ty)); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Palignr, RegMem::reg(src), dst, 8, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxwd, RegMem::from(dst), dst)); } (types::I32X4, types::I64X2) => { ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Pshufd, RegMem::reg(src), dst, 0xEE, OperandSize::Size32, )); ctx.emit(Inst::xmm_mov(SseOpcode::Pmovzxdq, RegMem::from(dst), dst)); } _ => unreachable!(), }, _ => unreachable!(), } } else { panic!("Unsupported non-vector type for widen instruction {:?}", ty); } } Opcode::Snarrow | Opcode::Unarrow => { let input_ty = ctx.input_ty(insn, 0); let output_ty = ctx.output_ty(insn, 0); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); if output_ty.is_vector() { match op { Opcode::Snarrow => match (input_ty, output_ty) { (types::I16X8, types::I8X16) => { let src1 = put_input_in_reg(ctx, inputs[0]); let src2 = put_input_in_reg(ctx, inputs[1]); ctx.emit(Inst::gen_move(dst, src1, input_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Packsswb, RegMem::reg(src2), dst)); } (types::I32X4, types::I16X8) => { let src1 = put_input_in_reg(ctx, inputs[0]); let src2 = put_input_in_reg(ctx, inputs[1]); ctx.emit(Inst::gen_move(dst, src1, input_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Packssdw, RegMem::reg(src2), dst)); } // TODO: The type we are expecting as input as actually an F64X2 but the instruction is only defined // for integers so here we use I64X2. This is a separate issue that needs to be fixed in instruction.rs. (types::I64X2, types::I32X4) => { if let Some(fcvt_inst) = matches_input(ctx, inputs[0], Opcode::FcvtToSintSat) { //y = i32x4.trunc_sat_f64x2_s_zero(x) is lowered to: //MOVE xmm_tmp, xmm_x //CMPEQPD xmm_tmp, xmm_x //MOVE xmm_y, xmm_x //ANDPS xmm_tmp, [wasm_f64x2_splat(2147483647.0)] //MINPD xmm_y, xmm_tmp //CVTTPD2DQ xmm_y, xmm_y let fcvt_input = InsnInput { insn: fcvt_inst, input: 0, }; let src = put_input_in_reg(ctx, fcvt_input); ctx.emit(Inst::gen_move(dst, src, input_ty)); let tmp1 = ctx.alloc_tmp(output_ty).only_reg().unwrap(); ctx.emit(Inst::gen_move(tmp1, src, input_ty)); let cond = FcmpImm::from(FloatCC::Equal); ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Cmppd, RegMem::reg(src), tmp1, cond.encode(), OperandSize::Size32, )); // 2147483647.0 is equivalent to 0x41DFFFFFFFC00000 static UMAX_MASK: [u8; 16] = [ 0x00, 0x00, 0xC0, 0xFF, 0xFF, 0xFF, 0xDF, 0x41, 0x00, 0x00, 0xC0, 0xFF, 0xFF, 0xFF, 0xDF, 0x41, ]; let umax_const = ctx.use_constant(VCodeConstantData::WellKnown(&UMAX_MASK)); let umax_mask = ctx.alloc_tmp(types::F64X2).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(umax_const, umax_mask, types::F64X2)); //ANDPD xmm_y, [wasm_f64x2_splat(2147483647.0)] ctx.emit(Inst::xmm_rm_r( SseOpcode::Andps, RegMem::from(umax_mask), tmp1, )); ctx.emit(Inst::xmm_rm_r(SseOpcode::Minpd, RegMem::from(tmp1), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Cvttpd2dq, RegMem::from(dst), dst, )); } else { unreachable!(); } } _ => unreachable!(), }, Opcode::Unarrow => match (input_ty, output_ty) { (types::I16X8, types::I8X16) => { let src1 = put_input_in_reg(ctx, inputs[0]); let src2 = put_input_in_reg(ctx, inputs[1]); ctx.emit(Inst::gen_move(dst, src1, input_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Packuswb, RegMem::reg(src2), dst)); } (types::I32X4, types::I16X8) => { let src1 = put_input_in_reg(ctx, inputs[0]); let src2 = put_input_in_reg(ctx, inputs[1]); ctx.emit(Inst::gen_move(dst, src1, input_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Packusdw, RegMem::reg(src2), dst)); } _ => unreachable!(), }, _ => unreachable!(), } } else { panic!("Unsupported non-vector type for widen instruction {:?}", ty); } } Opcode::Bitcast => { let input_ty = ctx.input_ty(insn, 0); let output_ty = ctx.output_ty(insn, 0); match (input_ty, output_ty) { (types::F32, types::I32) => { let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::xmm_to_gpr( SseOpcode::Movd, src, dst, OperandSize::Size32, )); } (types::I32, types::F32) => { let src = input_to_reg_mem(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gpr_to_xmm( SseOpcode::Movd, src, OperandSize::Size32, dst, )); } (types::F64, types::I64) => { let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::xmm_to_gpr( SseOpcode::Movq, src, dst, OperandSize::Size64, )); } (types::I64, types::F64) => { let src = input_to_reg_mem(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gpr_to_xmm( SseOpcode::Movq, src, OperandSize::Size64, dst, )); } _ => unreachable!("invalid bitcast from {:?} to {:?}", input_ty, output_ty), } } Opcode::Fabs | Opcode::Fneg => { let src = RegMem::reg(put_input_in_reg(ctx, inputs[0])); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); // In both cases, generate a constant and apply a single binary instruction: // - to compute the absolute value, set all bits to 1 but the MSB to 0, and bit-AND the // src with it. // - to compute the negated value, set all bits to 0 but the MSB to 1, and bit-XOR the // src with it. let output_ty = ty.unwrap(); if !output_ty.is_vector() { let (val, opcode): (u64, _) = match output_ty { types::F32 => match op { Opcode::Fabs => (0x7fffffff, SseOpcode::Andps), Opcode::Fneg => (0x80000000, SseOpcode::Xorps), _ => unreachable!(), }, types::F64 => match op { Opcode::Fabs => (0x7fffffffffffffff, SseOpcode::Andpd), Opcode::Fneg => (0x8000000000000000, SseOpcode::Xorpd), _ => unreachable!(), }, _ => panic!("unexpected type {:?} for Fabs", output_ty), }; for inst in Inst::gen_constant(ValueRegs::one(dst), val as u128, output_ty, |ty| { ctx.alloc_tmp(ty).only_reg().unwrap() }) { ctx.emit(inst); } ctx.emit(Inst::xmm_rm_r(opcode, src, dst)); } else { // Eventually vector constants should be available in `gen_constant` and this block // can be merged with the one above (TODO). if output_ty.bits() == 128 { // Move the `lhs` to the same register as `dst`; this may not emit an actual move // but ensures that the registers are the same to match x86's read-write operand // encoding. let src = put_input_in_reg(ctx, inputs[0]); ctx.emit(Inst::gen_move(dst, src, output_ty)); // Generate an all 1s constant in an XMM register. This uses CMPPS but could // have used CMPPD with the same effect. Note, we zero the temp we allocate // because if not, there is a chance that the register we use could be initialized // with NaN .. in which case the CMPPS would fail since NaN != NaN. let tmp = ctx.alloc_tmp(output_ty).only_reg().unwrap(); ctx.emit(Inst::xmm_rm_r(SseOpcode::Xorps, RegMem::from(tmp), tmp)); let cond = FcmpImm::from(FloatCC::Equal); let cmpps = Inst::xmm_rm_r_imm( SseOpcode::Cmpps, RegMem::reg(tmp.to_reg()), tmp, cond.encode(), OperandSize::Size32, ); ctx.emit(cmpps); // Shift the all 1s constant to generate the mask. let lane_bits = output_ty.lane_bits(); let (shift_opcode, opcode, shift_by) = match (op, lane_bits) { (Opcode::Fabs, _) => { unreachable!( "implemented in ISLE: inst = `{}`, type = `{:?}`", ctx.dfg().display_inst(insn), ty ); } (Opcode::Fneg, 32) => (SseOpcode::Pslld, SseOpcode::Xorps, 31), (Opcode::Fneg, 64) => (SseOpcode::Psllq, SseOpcode::Xorpd, 63), _ => unreachable!( "unexpected opcode and lane size: {:?}, {} bits", op, lane_bits ), }; let shift = Inst::xmm_rmi_reg(shift_opcode, RegMemImm::imm(shift_by), tmp); ctx.emit(shift); // Apply shifted mask (XOR or AND). let mask = Inst::xmm_rm_r(opcode, RegMem::reg(tmp.to_reg()), dst); ctx.emit(mask); } else { panic!("unexpected type {:?} for Fabs", output_ty); } } } Opcode::Fcopysign => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let lhs = put_input_in_reg(ctx, inputs[0]); let rhs = put_input_in_reg(ctx, inputs[1]); let ty = ty.unwrap(); // We're going to generate the following sequence: // // movabs $INT_MIN, tmp_gpr1 // mov{d,q} tmp_gpr1, tmp_xmm1 // movap{s,d} tmp_xmm1, dst // andnp{s,d} src_1, dst // movap{s,d} src_2, tmp_xmm2 // andp{s,d} tmp_xmm1, tmp_xmm2 // orp{s,d} tmp_xmm2, dst let tmp_xmm1 = ctx.alloc_tmp(types::F32).only_reg().unwrap(); let tmp_xmm2 = ctx.alloc_tmp(types::F32).only_reg().unwrap(); let (sign_bit_cst, mov_op, and_not_op, and_op, or_op) = match ty { types::F32 => ( 0x8000_0000, SseOpcode::Movaps, SseOpcode::Andnps, SseOpcode::Andps, SseOpcode::Orps, ), types::F64 => ( 0x8000_0000_0000_0000, SseOpcode::Movapd, SseOpcode::Andnpd, SseOpcode::Andpd, SseOpcode::Orpd, ), _ => { panic!("unexpected type {:?} for copysign", ty); } }; for inst in Inst::gen_constant(ValueRegs::one(tmp_xmm1), sign_bit_cst, ty, |ty| { ctx.alloc_tmp(ty).only_reg().unwrap() }) { ctx.emit(inst); } ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(tmp_xmm1.to_reg()), dst)); ctx.emit(Inst::xmm_rm_r(and_not_op, RegMem::reg(lhs), dst)); ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(rhs), tmp_xmm2)); ctx.emit(Inst::xmm_rm_r( and_op, RegMem::reg(tmp_xmm1.to_reg()), tmp_xmm2, )); ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(tmp_xmm2.to_reg()), dst)); } Opcode::Ceil | Opcode::Floor | Opcode::Nearest | Opcode::Trunc => { let ty = ty.unwrap(); if isa_flags.use_sse41() { let mode = match op { Opcode::Ceil => RoundImm::RoundUp, Opcode::Floor => RoundImm::RoundDown, Opcode::Nearest => RoundImm::RoundNearest, Opcode::Trunc => RoundImm::RoundZero, _ => panic!("unexpected opcode {:?} in Ceil/Floor/Nearest/Trunc", op), }; let op = match ty { types::F32 => SseOpcode::Roundss, types::F64 => SseOpcode::Roundsd, types::F32X4 => SseOpcode::Roundps, types::F64X2 => SseOpcode::Roundpd, _ => panic!("unexpected type {:?} in Ceil/Floor/Nearest/Trunc", ty), }; let src = input_to_reg_mem(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::xmm_rm_r_imm( op, src, dst, mode.encode(), OperandSize::Size32, )); } else { // Lower to VM calls when there's no access to SSE4.1. // Note, for vector types on platforms that don't support sse41 // the execution will panic here. let libcall = match (op, ty) { (Opcode::Ceil, types::F32) => LibCall::CeilF32, (Opcode::Ceil, types::F64) => LibCall::CeilF64, (Opcode::Floor, types::F32) => LibCall::FloorF32, (Opcode::Floor, types::F64) => LibCall::FloorF64, (Opcode::Nearest, types::F32) => LibCall::NearestF32, (Opcode::Nearest, types::F64) => LibCall::NearestF64, (Opcode::Trunc, types::F32) => LibCall::TruncF32, (Opcode::Trunc, types::F64) => LibCall::TruncF64, _ => panic!( "unexpected type/opcode {:?}/{:?} in Ceil/Floor/Nearest/Trunc", ty, op ), }; emit_vm_call(ctx, flags, triple, libcall, insn, inputs, outputs)?; } } Opcode::DynamicStackAddr => unimplemented!("DynamicStackAddr"), Opcode::StackAddr => { let (stack_slot, offset) = match *ctx.data(insn) { InstructionData::StackLoad { opcode: Opcode::StackAddr, stack_slot, offset, } => (stack_slot, offset), _ => unreachable!(), }; let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let offset: i32 = offset.into(); let inst = ctx.abi() .sized_stackslot_addr(stack_slot, u32::try_from(offset).unwrap(), dst); ctx.emit(inst); } Opcode::Select => { implemented_in_isle(ctx); } Opcode::Selectif | Opcode::SelectifSpectreGuard => { let lhs = put_input_in_regs(ctx, inputs[1]); let rhs = put_input_in_regs(ctx, inputs[2]); let dst = get_output_reg(ctx, outputs[0]); let ty = ctx.output_ty(insn, 0); // Verification ensures that the input is always a single-def ifcmp. let cmp_insn = ctx .get_input_as_source_or_const(inputs[0].insn, inputs[0].input) .inst .as_inst() .unwrap() .0; debug_assert_eq!(ctx.data(cmp_insn).opcode(), Opcode::Ifcmp); let cond_code = ctx.data(insn).cond_code().unwrap(); let cond_code = emit_cmp(ctx, cmp_insn, cond_code); let cc = CC::from_intcc(cond_code); if is_int_or_ref_ty(ty) || ty == types::I128 { let size = ty.bytes() as u8; emit_moves(ctx, dst, rhs, ty); emit_cmoves(ctx, size, cc, lhs, dst); } else { debug_assert!(ty == types::F32 || ty == types::F64); emit_moves(ctx, dst, rhs, ty); ctx.emit(Inst::xmm_cmove( ty, cc, RegMem::reg(lhs.only_reg().unwrap()), dst.only_reg().unwrap(), )); } } Opcode::Udiv | Opcode::Urem | Opcode::Sdiv | Opcode::Srem => { let kind = match op { Opcode::Udiv => DivOrRemKind::UnsignedDiv, Opcode::Sdiv => DivOrRemKind::SignedDiv, Opcode::Urem => DivOrRemKind::UnsignedRem, Opcode::Srem => DivOrRemKind::SignedRem, _ => unreachable!(), }; let is_div = kind.is_div(); let input_ty = ctx.input_ty(insn, 0); let size = OperandSize::from_ty(input_ty); let dividend = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gen_move( Writable::from_reg(regs::rax()), dividend, input_ty, )); // Always do explicit checks for `srem`: otherwise, INT_MIN % -1 is not handled properly. if flags.avoid_div_traps() || op == Opcode::Srem { // A vcode meta-instruction is used to lower the inline checks, since they embed // pc-relative offsets that must not change, thus requiring regalloc to not // interfere by introducing spills and reloads. // // Note it keeps the result in $rax (for divide) or $rdx (for rem), so that // regalloc is aware of the coalescing opportunity between rax/rdx and the // destination register. let divisor = put_input_in_reg(ctx, inputs[1]); let divisor_copy = ctx.alloc_tmp(types::I64).only_reg().unwrap(); ctx.emit(Inst::gen_move(divisor_copy, divisor, types::I64)); let tmp = if op == Opcode::Sdiv && size == OperandSize::Size64 { Some(ctx.alloc_tmp(types::I64).only_reg().unwrap()) } else { None }; // TODO use xor ctx.emit(Inst::imm( OperandSize::Size32, 0, Writable::from_reg(regs::rdx()), )); ctx.emit(Inst::checked_div_or_rem_seq(kind, size, divisor_copy, tmp)); } else { // We don't want more than one trap record for a single instruction, // so let's not allow the "mem" case (load-op merging) here; force // divisor into a register instead. let divisor = RegMem::reg(put_input_in_reg(ctx, inputs[1])); // Fill in the high parts: if kind.is_signed() { // sign-extend the sign-bit of al into ah for size 1, or rax into rdx, for // signed opcodes. ctx.emit(Inst::sign_extend_data(size)); } else if input_ty == types::I8 { ctx.emit(Inst::movzx_rm_r( ExtMode::BL, RegMem::reg(regs::rax()), Writable::from_reg(regs::rax()), )); } else { // zero for unsigned opcodes. ctx.emit(Inst::imm( OperandSize::Size64, 0, Writable::from_reg(regs::rdx()), )); } // Emit the actual idiv. ctx.emit(Inst::div(size, kind.is_signed(), divisor)); } // Move the result back into the destination reg. if is_div { // The quotient is in rax. ctx.emit(Inst::gen_move(dst, regs::rax(), input_ty)); } else { if size == OperandSize::Size8 { // The remainder is in AH. Right-shift by 8 bits then move from rax. ctx.emit(Inst::shift_r( OperandSize::Size64, ShiftKind::ShiftRightLogical, Some(8), Writable::from_reg(regs::rax()), )); ctx.emit(Inst::gen_move(dst, regs::rax(), input_ty)); } else { // The remainder is in rdx. ctx.emit(Inst::gen_move(dst, regs::rdx(), input_ty)); } } } Opcode::Umulhi | Opcode::Smulhi => { let input_ty = ctx.input_ty(insn, 0); let lhs = put_input_in_reg(ctx, inputs[0]); let rhs = input_to_reg_mem(ctx, inputs[1]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); // Move lhs in %rax. ctx.emit(Inst::gen_move( Writable::from_reg(regs::rax()), lhs, input_ty, )); // Emit the actual mul or imul. let signed = op == Opcode::Smulhi; ctx.emit(Inst::mul_hi(OperandSize::from_ty(input_ty), signed, rhs)); // Read the result from the high part (stored in %rdx). ctx.emit(Inst::gen_move(dst, regs::rdx(), input_ty)); } Opcode::GetPinnedReg => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gen_move(dst, regs::pinned_reg(), types::I64)); } Opcode::SetPinnedReg => { let src = put_input_in_reg(ctx, inputs[0]); ctx.emit(Inst::gen_move( Writable::from_reg(regs::pinned_reg()), src, types::I64, )); } Opcode::Vconst => { let used_constant = if let &InstructionData::UnaryConst { constant_handle, .. } = ctx.data(insn) { ctx.use_constant(VCodeConstantData::Pool( constant_handle, ctx.get_constant_data(constant_handle).clone(), )) } else { unreachable!("vconst should always have unary_const format") }; // TODO use Inst::gen_constant() instead. let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let ty = ty.unwrap(); ctx.emit(Inst::xmm_load_const(used_constant, dst, ty)); } Opcode::RawBitcast => { // A raw_bitcast is just a mechanism for correcting the type of V128 values (see // https://github.com/bytecodealliance/wasmtime/issues/1147). As such, this IR // instruction should emit no machine code but a move is necessary to give the register // allocator a definition for the output virtual register. let src = put_input_in_reg(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let ty = ty.unwrap(); ctx.emit(Inst::gen_move(dst, src, ty)); } Opcode::Shuffle => { let ty = ty.unwrap(); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let lhs_ty = ctx.input_ty(insn, 0); let lhs = put_input_in_reg(ctx, inputs[0]); let rhs = put_input_in_reg(ctx, inputs[1]); let mask = match ctx.get_immediate(insn) { Some(DataValue::V128(bytes)) => bytes.to_vec(), _ => unreachable!("shuffle should always have a 16-byte immediate"), }; // A mask-building helper: in 128-bit SIMD, 0-15 indicate which lane to read from and a // 1 in the most significant position zeroes the lane. let zero_unknown_lane_index = |b: u8| if b > 15 { 0b10000000 } else { b }; ctx.emit(Inst::gen_move(dst, rhs, ty)); if rhs == lhs { // If `lhs` and `rhs` are the same we can use a single PSHUFB to shuffle the XMM // register. We statically build `constructed_mask` to zero out any unknown lane // indices (may not be completely necessary: verification could fail incorrect mask // values) and fix the indexes to all point to the `dst` vector. let constructed_mask = mask .iter() // If the mask is greater than 15 it still may be referring to a lane in b. .map(|&b| if b > 15 { b.wrapping_sub(16) } else { b }) .map(zero_unknown_lane_index) .collect(); let constant = ctx.use_constant(VCodeConstantData::Generated(constructed_mask)); let tmp = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(constant, tmp, ty)); // After loading the constructed mask in a temporary register, we use this to // shuffle the `dst` register (remember that, in this case, it is the same as // `src` so we disregard this register). ctx.emit(Inst::xmm_rm_r(SseOpcode::Pshufb, RegMem::from(tmp), dst)); } else { if isa_flags.use_avx512vl_simd() && isa_flags.use_avx512vbmi_simd() { assert!( mask.iter().all(|b| *b < 32), "shuffle mask values must be between 0 and 31" ); // Load the mask into the destination register. let constant = ctx.use_constant(VCodeConstantData::Generated(mask.into())); ctx.emit(Inst::xmm_load_const(constant, dst, ty)); // VPERMI2B has the exact semantics of Wasm's shuffle: // permute the bytes in `src1` and `src2` using byte indexes // in `dst` and store the byte results in `dst`. ctx.emit(Inst::xmm_rm_r_evex( Avx512Opcode::Vpermi2b, RegMem::reg(rhs), lhs, dst, )); } else { // If `lhs` and `rhs` are different, we must shuffle each separately and then OR // them together. This is necessary due to PSHUFB semantics. As in the case above, // we build the `constructed_mask` for each case statically. // PSHUFB the `lhs` argument into `tmp0`, placing zeroes for unused lanes. let tmp0 = ctx.alloc_tmp(lhs_ty).only_reg().unwrap(); ctx.emit(Inst::gen_move(tmp0, lhs, lhs_ty)); let constructed_mask = mask.iter().cloned().map(zero_unknown_lane_index).collect(); let constant = ctx.use_constant(VCodeConstantData::Generated(constructed_mask)); let tmp1 = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(constant, tmp1, ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pshufb, RegMem::from(tmp1), tmp0)); // PSHUFB the second argument, placing zeroes for unused lanes. let constructed_mask = mask .iter() .map(|b| b.wrapping_sub(16)) .map(zero_unknown_lane_index) .collect(); let constant = ctx.use_constant(VCodeConstantData::Generated(constructed_mask)); let tmp2 = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(constant, tmp2, ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pshufb, RegMem::from(tmp2), dst)); // OR the shuffled registers (the mechanism and lane-size for OR-ing the registers // is not important). ctx.emit(Inst::xmm_rm_r(SseOpcode::Orps, RegMem::from(tmp0), dst)); } } } Opcode::Swizzle => { // SIMD swizzle; the following inefficient implementation is due to the Wasm SIMD spec // requiring mask indexes greater than 15 to have the same semantics as a 0 index. For // the spec discussion, see https://github.com/WebAssembly/simd/issues/93. The CLIF // semantics match the Wasm SIMD semantics for this instruction. // The instruction format maps to variables like: %dst = swizzle %src, %mask let ty = ty.unwrap(); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let src = put_input_in_reg(ctx, inputs[0]); let swizzle_mask = put_input_in_reg(ctx, inputs[1]); // Inform the register allocator that `src` and `dst` should be in the same register. ctx.emit(Inst::gen_move(dst, src, ty)); // Create a mask for zeroing out-of-bounds lanes of the swizzle mask. let zero_mask = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); static ZERO_MASK_VALUE: [u8; 16] = [ 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, 0x70, ]; let constant = ctx.use_constant(VCodeConstantData::WellKnown(&ZERO_MASK_VALUE)); ctx.emit(Inst::xmm_load_const(constant, zero_mask, ty)); // Use the `zero_mask` on a writable `swizzle_mask`. let swizzle_mask_tmp = ctx.alloc_tmp(types::I8X16).only_reg().unwrap(); ctx.emit(Inst::gen_move(swizzle_mask_tmp, swizzle_mask, ty)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Paddusb, RegMem::from(zero_mask), swizzle_mask_tmp, )); // Shuffle `dst` using the fixed-up `swizzle_mask`. ctx.emit(Inst::xmm_rm_r( SseOpcode::Pshufb, RegMem::from(swizzle_mask_tmp), dst, )); } Opcode::Insertlane => { unreachable!( "implemented in ISLE: inst = `{}`, type = `{:?}`", ctx.dfg().display_inst(insn), ty ); } Opcode::Extractlane => { // The instruction format maps to variables like: %dst = extractlane %src, %lane let ty = ty.unwrap(); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let src_ty = ctx.input_ty(insn, 0); assert_eq!(src_ty.bits(), 128); let src = put_input_in_reg(ctx, inputs[0]); let lane = if let InstructionData::BinaryImm8 { imm, .. } = ctx.data(insn) { *imm } else { unreachable!(); }; debug_assert!(lane < src_ty.lane_count() as u8); emit_extract_lane(ctx, src, dst, lane, ty); } Opcode::ScalarToVector => { // When moving a scalar value to a vector register, we must be handle several // situations: // 1. a scalar float is already in an XMM register, so we simply move it // 2. a scalar of any other type resides in a GPR register: MOVD moves the bits to an // XMM register and zeroes the upper bits // 3. a scalar (float or otherwise) that has previously been loaded from memory (e.g. // the default lowering of Wasm's `load[32|64]_zero`) can be lowered to a single // MOVSS/MOVSD instruction; to do this, we rely on `input_to_reg_mem` to sink the // unused load. let src = input_to_reg_mem(ctx, inputs[0]); let src_ty = ctx.input_ty(insn, 0); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let dst_ty = ty.unwrap(); assert!(src_ty == dst_ty.lane_type() && dst_ty.bits() == 128); match src { RegMem::Reg { reg } => { if src_ty.is_float() { // Case 1: when moving a scalar float, we simply move from one XMM register // to another, expecting the register allocator to elide this. Here we // assume that the upper bits of a scalar float have not been munged with // (the same assumption the old backend makes). ctx.emit(Inst::gen_move(dst, reg, dst_ty)); } else { // Case 2: when moving a scalar value of any other type, use MOVD to zero // the upper lanes. let src_size = match src_ty.bits() { 32 => OperandSize::Size32, 64 => OperandSize::Size64, _ => unimplemented!("invalid source size for type: {}", src_ty), }; ctx.emit(Inst::gpr_to_xmm(SseOpcode::Movd, src, src_size, dst)); } } RegMem::Mem { .. } => { // Case 3: when presented with `load + scalar_to_vector`, coalesce into a single // MOVSS/MOVSD instruction. let opcode = match src_ty.bits() { 32 => SseOpcode::Movss, 64 => SseOpcode::Movsd, _ => unimplemented!("unable to move scalar to vector for type: {}", src_ty), }; ctx.emit(Inst::xmm_mov(opcode, src, dst)); } } } Opcode::Splat => { let ty = ty.unwrap(); assert_eq!(ty.bits(), 128); let src_ty = ctx.input_ty(insn, 0); assert!(src_ty.bits() < 128); let src = input_to_reg_mem(ctx, inputs[0]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); // We know that splat will overwrite all of the lanes of `dst` but it takes several // instructions to do so. Because of the multiple instructions, there is no good way to // declare `dst` a `def` except with the following pseudo-instruction. ctx.emit(Inst::xmm_uninit_value(dst)); // TODO: eventually many of these sequences could be optimized with AVX's VBROADCAST* // and VPBROADCAST*. match ty.lane_bits() { 8 => { emit_insert_lane(ctx, src, dst, 0, ty.lane_type()); // Initialize a register with all 0s. let tmp = ctx.alloc_tmp(ty).only_reg().unwrap(); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp), tmp)); // Shuffle the lowest byte lane to all other lanes. ctx.emit(Inst::xmm_rm_r(SseOpcode::Pshufb, RegMem::from(tmp), dst)) } 16 => { emit_insert_lane(ctx, src.clone(), dst, 0, ty.lane_type()); emit_insert_lane(ctx, src, dst, 1, ty.lane_type()); // Shuffle the lowest two lanes to all other lanes. ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Pshufd, RegMem::from(dst), dst, 0, OperandSize::Size32, )) } 32 => { emit_insert_lane(ctx, src, dst, 0, ty.lane_type()); // Shuffle the lowest lane to all other lanes. ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Pshufd, RegMem::from(dst), dst, 0, OperandSize::Size32, )) } 64 => { emit_insert_lane(ctx, src.clone(), dst, 0, ty.lane_type()); emit_insert_lane(ctx, src, dst, 1, ty.lane_type()); } _ => panic!("Invalid type to splat: {}", ty), } } Opcode::VanyTrue => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let src_ty = ctx.input_ty(insn, 0); assert_eq!(src_ty.bits(), 128); let src = put_input_in_reg(ctx, inputs[0]); // Set the ZF if the result is all zeroes. ctx.emit(Inst::xmm_cmp_rm_r(SseOpcode::Ptest, RegMem::reg(src), src)); // If the ZF is not set, place a 1 in `dst`. ctx.emit(Inst::setcc(CC::NZ, dst)); } Opcode::VallTrue => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let src_ty = ctx.input_ty(insn, 0); assert_eq!(src_ty.bits(), 128); let src = input_to_reg_mem(ctx, inputs[0]); let eq = |ty: Type| match ty.lane_bits() { 8 => SseOpcode::Pcmpeqb, 16 => SseOpcode::Pcmpeqw, 32 => SseOpcode::Pcmpeqd, 64 => SseOpcode::Pcmpeqq, _ => panic!("Unable to find an instruction for {} for type: {}", op, ty), }; // Initialize a register with all 0s. let tmp = ctx.alloc_tmp(src_ty).only_reg().unwrap(); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pxor, RegMem::from(tmp), tmp)); // Compare to see what lanes are filled with all 1s. ctx.emit(Inst::xmm_rm_r(eq(src_ty), src, tmp)); // Set the ZF if the result is all zeroes. ctx.emit(Inst::xmm_cmp_rm_r( SseOpcode::Ptest, RegMem::from(tmp), tmp.to_reg(), )); // If the ZF is set, place a 1 in `dst`. ctx.emit(Inst::setcc(CC::Z, dst)); } Opcode::VhighBits => { let src = put_input_in_reg(ctx, inputs[0]); let src_ty = ctx.input_ty(insn, 0); debug_assert!(src_ty.is_vector() && src_ty.bits() == 128); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); debug_assert!(dst.to_reg().class() == RegClass::Int); // The Intel specification allows using both 32-bit and 64-bit GPRs as destination for // the "move mask" instructions. This is controlled by the REX.R bit: "In 64-bit mode, // the instruction can access additional registers when used with a REX.R prefix. The // default operand size is 64-bit in 64-bit mode" (PMOVMSKB in IA Software Development // Manual, vol. 2). This being the case, we will always clear REX.W since its use is // unnecessary (`OperandSize` is used for setting/clearing REX.W). let size = OperandSize::Size32; match src_ty { types::I8X16 | types::B8X16 => { ctx.emit(Inst::xmm_to_gpr(SseOpcode::Pmovmskb, src, dst, size)) } types::I32X4 | types::B32X4 | types::F32X4 => { ctx.emit(Inst::xmm_to_gpr(SseOpcode::Movmskps, src, dst, size)) } types::I64X2 | types::B64X2 | types::F64X2 => { ctx.emit(Inst::xmm_to_gpr(SseOpcode::Movmskpd, src, dst, size)) } types::I16X8 | types::B16X8 => { // There is no x86 instruction for extracting the high bit of 16-bit lanes so // here we: // - duplicate the 16-bit lanes of `src` into 8-bit lanes: // PACKSSWB([x1, x2, ...], [x1, x2, ...]) = [x1', x2', ..., x1', x2', ...] // - use PMOVMSKB to gather the high bits; now we have duplicates, though // - shift away the bottom 8 high bits to remove the duplicates. let tmp = ctx.alloc_tmp(src_ty).only_reg().unwrap(); ctx.emit(Inst::gen_move(tmp, src, src_ty)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Packsswb, RegMem::reg(src), tmp)); ctx.emit(Inst::xmm_to_gpr( SseOpcode::Pmovmskb, tmp.to_reg(), dst, size, )); ctx.emit(Inst::shift_r( OperandSize::Size64, ShiftKind::ShiftRightLogical, Some(8), dst, )); } _ => unimplemented!("unknown input type {} for {}", src_ty, op), } } Opcode::Iconcat => { let ty = ctx.output_ty(insn, 0); assert_eq!( ty, types::I128, "Iconcat not expected to be used for non-128-bit type" ); assert_eq!(ctx.input_ty(insn, 0), types::I64); assert_eq!(ctx.input_ty(insn, 1), types::I64); let lo = put_input_in_reg(ctx, inputs[0]); let hi = put_input_in_reg(ctx, inputs[1]); let dst = get_output_reg(ctx, outputs[0]); ctx.emit(Inst::gen_move(dst.regs()[0], lo, types::I64)); ctx.emit(Inst::gen_move(dst.regs()[1], hi, types::I64)); } Opcode::Isplit => { let ty = ctx.input_ty(insn, 0); assert_eq!( ty, types::I128, "Iconcat not expected to be used for non-128-bit type" ); assert_eq!(ctx.output_ty(insn, 0), types::I64); assert_eq!(ctx.output_ty(insn, 1), types::I64); let src = put_input_in_regs(ctx, inputs[0]); let dst_lo = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let dst_hi = get_output_reg(ctx, outputs[1]).only_reg().unwrap(); ctx.emit(Inst::gen_move(dst_lo, src.regs()[0], types::I64)); ctx.emit(Inst::gen_move(dst_hi, src.regs()[1], types::I64)); } Opcode::TlsValue => match flags.tls_model() { TlsModel::ElfGd => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let (name, _, _) = ctx.symbol_value(insn).unwrap(); let symbol = name.clone(); ctx.emit(Inst::ElfTlsGetAddr { symbol }); ctx.emit(Inst::gen_move(dst, regs::rax(), types::I64)); } TlsModel::Macho => { let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); let (name, _, _) = ctx.symbol_value(insn).unwrap(); let symbol = name.clone(); ctx.emit(Inst::MachOTlsGetAddr { symbol }); ctx.emit(Inst::gen_move(dst, regs::rax(), types::I64)); } _ => { todo!( "Unimplemented TLS model in x64 backend: {:?}", flags.tls_model() ); } }, Opcode::SqmulRoundSat => { // Lane-wise saturating rounding multiplication in Q15 format // Optimal lowering taken from instruction proposal https://github.com/WebAssembly/simd/pull/365 // y = i16x8.q15mulr_sat_s(a, b) is lowered to: //MOVDQA xmm_y, xmm_a //MOVDQA xmm_tmp, wasm_i16x8_splat(0x8000) //PMULHRSW xmm_y, xmm_b //PCMPEQW xmm_tmp, xmm_y //PXOR xmm_y, xmm_tmp let input_ty = ctx.input_ty(insn, 0); let src1 = put_input_in_reg(ctx, inputs[0]); let src2 = put_input_in_reg(ctx, inputs[1]); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gen_move(dst, src1, input_ty)); static SAT_MASK: [u8; 16] = [ 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, ]; let mask_const = ctx.use_constant(VCodeConstantData::WellKnown(&SAT_MASK)); let mask = ctx.alloc_tmp(types::I16X8).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(mask_const, mask, types::I16X8)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Pmulhrsw, RegMem::reg(src2), dst)); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pcmpeqw, RegMem::reg(dst.to_reg()), mask, )); ctx.emit(Inst::xmm_rm_r( SseOpcode::Pxor, RegMem::reg(mask.to_reg()), dst, )); } Opcode::Uunarrow => { if let Some(fcvt_inst) = matches_input(ctx, inputs[0], Opcode::FcvtToUintSat) { //y = i32x4.trunc_sat_f64x2_u_zero(x) is lowered to: //MOVAPD xmm_y, xmm_x //XORPD xmm_tmp, xmm_tmp //MAXPD xmm_y, xmm_tmp //MINPD xmm_y, [wasm_f64x2_splat(4294967295.0)] //ROUNDPD xmm_y, xmm_y, 0x0B //ADDPD xmm_y, [wasm_f64x2_splat(0x1.0p+52)] //SHUFPS xmm_y, xmm_xmp, 0x88 let fcvt_input = InsnInput { insn: fcvt_inst, input: 0, }; let input_ty = ctx.input_ty(fcvt_inst, 0); let output_ty = ctx.output_ty(insn, 0); let src = put_input_in_reg(ctx, fcvt_input); let dst = get_output_reg(ctx, outputs[0]).only_reg().unwrap(); ctx.emit(Inst::gen_move(dst, src, input_ty)); let tmp1 = ctx.alloc_tmp(output_ty).only_reg().unwrap(); ctx.emit(Inst::xmm_rm_r(SseOpcode::Xorpd, RegMem::from(tmp1), tmp1)); ctx.emit(Inst::xmm_rm_r(SseOpcode::Maxpd, RegMem::from(tmp1), dst)); // 4294967295.0 is equivalent to 0x41EFFFFFFFE00000 static UMAX_MASK: [u8; 16] = [ 0x00, 0x00, 0xE0, 0xFF, 0xFF, 0xFF, 0xEF, 0x41, 0x00, 0x00, 0xE0, 0xFF, 0xFF, 0xFF, 0xEF, 0x41, ]; let umax_const = ctx.use_constant(VCodeConstantData::WellKnown(&UMAX_MASK)); let umax_mask = ctx.alloc_tmp(types::F64X2).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const(umax_const, umax_mask, types::F64X2)); //MINPD xmm_y, [wasm_f64x2_splat(4294967295.0)] ctx.emit(Inst::xmm_rm_r( SseOpcode::Minpd, RegMem::from(umax_mask), dst, )); //ROUNDPD xmm_y, xmm_y, 0x0B ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Roundpd, RegMem::reg(dst.to_reg()), dst, RoundImm::RoundZero.encode(), OperandSize::Size32, )); //ADDPD xmm_y, [wasm_f64x2_splat(0x1.0p+52)] static UINT_MASK: [u8; 16] = [ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x43, ]; let uint_mask_const = ctx.use_constant(VCodeConstantData::WellKnown(&UINT_MASK)); let uint_mask = ctx.alloc_tmp(types::F64X2).only_reg().unwrap(); ctx.emit(Inst::xmm_load_const( uint_mask_const, uint_mask, types::F64X2, )); ctx.emit(Inst::xmm_rm_r( SseOpcode::Addpd, RegMem::from(uint_mask), dst, )); //SHUFPS xmm_y, xmm_xmp, 0x88 ctx.emit(Inst::xmm_rm_r_imm( SseOpcode::Shufps, RegMem::reg(tmp1.to_reg()), dst, 0x88, OperandSize::Size32, )); } else { println!("Did not match fcvt input!"); } } // Unimplemented opcodes below. These are not currently used by Wasm // lowering or other known embeddings, but should be either supported or // removed eventually Opcode::ExtractVector => { unimplemented!("ExtractVector not supported"); } Opcode::Cls => unimplemented!("Cls not supported"), Opcode::Fma => implemented_in_isle(ctx), Opcode::BorNot | Opcode::BxorNot => { unimplemented!("or-not / xor-not opcodes not implemented"); } Opcode::Bmask => unimplemented!("Bmask not implemented"), Opcode::Trueif | Opcode::Trueff => unimplemented!("trueif / trueff not implemented"), Opcode::ConstAddr => unimplemented!("ConstAddr not implemented"), Opcode::Vsplit | Opcode::Vconcat => { unimplemented!("Vector split/concat ops not implemented."); } // Opcodes that should be removed by legalization. These should // eventually be removed if/when we replace in-situ legalization with // something better. Opcode::Ifcmp | Opcode::Ffcmp => { panic!("Should never reach ifcmp/ffcmp as isel root!"); } Opcode::IaddImm | Opcode::ImulImm | Opcode::UdivImm | Opcode::SdivImm | Opcode::UremImm | Opcode::SremImm | Opcode::IrsubImm | Opcode::IaddCin | Opcode::IaddIfcin | Opcode::IaddCout | Opcode::IaddCarry | Opcode::IaddIfcarry | Opcode::IsubBin | Opcode::IsubIfbin | Opcode::IsubBout | Opcode::IsubIfbout | Opcode::IsubBorrow | Opcode::IsubIfborrow | Opcode::BandImm | Opcode::BorImm | Opcode::BxorImm | Opcode::RotlImm | Opcode::RotrImm | Opcode::IshlImm | Opcode::UshrImm | Opcode::SshrImm | Opcode::IcmpImm | Opcode::IfcmpImm => { panic!("ALU+imm and ALU+carry ops should not appear here!"); } Opcode::StackLoad | Opcode::StackStore | Opcode::DynamicStackStore | Opcode::DynamicStackLoad => { panic!("Direct stack memory access not supported; should have been legalized"); } Opcode::GlobalValue => { panic!("global_value should have been removed by legalization!"); } Opcode::HeapAddr => { panic!("heap_addr should have been removed by legalization!"); } Opcode::TableAddr => { panic!("table_addr should have been removed by legalization!"); } Opcode::IfcmpSp | Opcode::Copy => { panic!("Unused opcode should not be encountered."); } Opcode::Trapz | Opcode::Trapnz | Opcode::ResumableTrapnz => { panic!("trapz / trapnz / resumable_trapnz should have been removed by legalization!"); } Opcode::Jump | Opcode::Brz | Opcode::Brnz | Opcode::BrIcmp | Opcode::Brif | Opcode::Brff | Opcode::BrTable => { panic!("Branch opcode reached non-branch lowering logic!"); } Opcode::Nop => { // Nothing. } } Ok(()) } //============================================================================= // Lowering-backend trait implementation. impl LowerBackend for X64Backend { type MInst = Inst; fn lower>(&self, ctx: &mut C, ir_inst: IRInst) -> CodegenResult<()> { lower_insn_to_regs(ctx, ir_inst, &self.flags, &self.x64_flags, &self.triple) } fn lower_branch_group>( &self, ctx: &mut C, branches: &[IRInst], targets: &[MachLabel], ) -> CodegenResult<()> { // A block should end with at most two branches. The first may be a // conditional branch; a conditional branch can be followed only by an // unconditional branch or fallthrough. Otherwise, if only one branch, // it may be an unconditional branch, a fallthrough, a return, or a // trap. These conditions are verified by `is_ebb_basic()` during the // verifier pass. assert!(branches.len() <= 2); if branches.len() == 2 { // Must be a conditional branch followed by an unconditional branch. let op0 = ctx.data(branches[0]).opcode(); let op1 = ctx.data(branches[1]).opcode(); trace!( "lowering two-branch group: opcodes are {:?} and {:?}", op0, op1 ); assert!(op1 == Opcode::Jump); let taken = targets[0]; // not_taken target is the target of the second branch. let not_taken = targets[1]; match op0 { Opcode::Brz | Opcode::Brnz => { let flag_input = InsnInput { insn: branches[0], input: 0, }; let src_ty = ctx.input_ty(branches[0], 0); if let Some(icmp) = matches_input(ctx, flag_input, Opcode::Icmp) { let cond_code = ctx.data(icmp).cond_code().unwrap(); let cond_code = emit_cmp(ctx, icmp, cond_code); let cond_code = if op0 == Opcode::Brz { cond_code.inverse() } else { cond_code }; let cc = CC::from_intcc(cond_code); ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } else if let Some(fcmp) = matches_input(ctx, flag_input, Opcode::Fcmp) { let cond_code = ctx.data(fcmp).fp_cond_code().unwrap(); let cond_code = if op0 == Opcode::Brz { cond_code.inverse() } else { cond_code }; match emit_fcmp(ctx, fcmp, cond_code, FcmpSpec::Normal) { FcmpCondResult::Condition(cc) => { ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } FcmpCondResult::AndConditions(cc1, cc2) => { ctx.emit(Inst::jmp_if(cc1.invert(), not_taken)); ctx.emit(Inst::jmp_cond(cc2.invert(), not_taken, taken)); } FcmpCondResult::OrConditions(cc1, cc2) => { ctx.emit(Inst::jmp_if(cc1, taken)); ctx.emit(Inst::jmp_cond(cc2, taken, not_taken)); } FcmpCondResult::InvertedEqualOrConditions(_, _) => unreachable!(), } } else if src_ty == types::I128 { let src = put_input_in_regs( ctx, InsnInput { insn: branches[0], input: 0, }, ); let (half_cc, comb_op) = match op0 { Opcode::Brz => (CC::Z, AluRmiROpcode::And8), Opcode::Brnz => (CC::NZ, AluRmiROpcode::Or8), _ => unreachable!(), }; let tmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); let tmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); ctx.emit(Inst::cmp_rmi_r( OperandSize::Size64, RegMemImm::imm(0), src.regs()[0], )); ctx.emit(Inst::setcc(half_cc, tmp1)); ctx.emit(Inst::cmp_rmi_r( OperandSize::Size64, RegMemImm::imm(0), src.regs()[1], )); ctx.emit(Inst::setcc(half_cc, tmp2)); ctx.emit(Inst::alu_rmi_r( OperandSize::Size32, comb_op, RegMemImm::reg(tmp1.to_reg()), tmp2, )); ctx.emit(Inst::jmp_cond(CC::NZ, taken, not_taken)); } else if is_int_or_ref_ty(src_ty) || is_bool_ty(src_ty) { let src = put_input_in_reg( ctx, InsnInput { insn: branches[0], input: 0, }, ); let cc = match op0 { Opcode::Brz => CC::Z, Opcode::Brnz => CC::NZ, _ => unreachable!(), }; // See case for `Opcode::Select` above re: testing the // boolean input. let test_input = if src_ty == types::B1 { // test src, 1 RegMemImm::imm(1) } else { assert!(!is_bool_ty(src_ty)); // test src, src RegMemImm::reg(src) }; ctx.emit(Inst::test_rmi_r( OperandSize::from_ty(src_ty), test_input, src, )); ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } else { unimplemented!("brz/brnz with non-int type {:?}", src_ty); } } Opcode::BrIcmp => { let src_ty = ctx.input_ty(branches[0], 0); if is_int_or_ref_ty(src_ty) || is_bool_ty(src_ty) { let lhs = put_input_in_reg( ctx, InsnInput { insn: branches[0], input: 0, }, ); let rhs = input_to_reg_mem_imm( ctx, InsnInput { insn: branches[0], input: 1, }, ); let cc = CC::from_intcc(ctx.data(branches[0]).cond_code().unwrap()); // Cranelift's icmp semantics want to compare lhs - rhs, while Intel gives // us dst - src at the machine instruction level, so invert operands. ctx.emit(Inst::cmp_rmi_r(OperandSize::from_ty(src_ty), rhs, lhs)); ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } else { unimplemented!("bricmp with non-int type {:?}", src_ty); } } Opcode::Brif => { let flag_input = InsnInput { insn: branches[0], input: 0, }; if let Some(ifcmp) = matches_input(ctx, flag_input, Opcode::Ifcmp) { let cond_code = ctx.data(branches[0]).cond_code().unwrap(); let cond_code = emit_cmp(ctx, ifcmp, cond_code); let cc = CC::from_intcc(cond_code); ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } else if let Some(ifcmp_sp) = matches_input(ctx, flag_input, Opcode::IfcmpSp) { let operand = put_input_in_reg( ctx, InsnInput { insn: ifcmp_sp, input: 0, }, ); let ty = ctx.input_ty(ifcmp_sp, 0); ctx.emit(Inst::cmp_rmi_r( OperandSize::from_ty(ty), RegMemImm::reg(regs::rsp()), operand, )); let cond_code = ctx.data(branches[0]).cond_code().unwrap(); let cc = CC::from_intcc(cond_code); ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } else { // Should be disallowed by flags checks in verifier. unimplemented!("Brif with non-ifcmp input"); } } Opcode::Brff => { let flag_input = InsnInput { insn: branches[0], input: 0, }; if let Some(ffcmp) = matches_input(ctx, flag_input, Opcode::Ffcmp) { let cond_code = ctx.data(branches[0]).fp_cond_code().unwrap(); match emit_fcmp(ctx, ffcmp, cond_code, FcmpSpec::Normal) { FcmpCondResult::Condition(cc) => { ctx.emit(Inst::jmp_cond(cc, taken, not_taken)); } FcmpCondResult::AndConditions(cc1, cc2) => { ctx.emit(Inst::jmp_if(cc1.invert(), not_taken)); ctx.emit(Inst::jmp_cond(cc2.invert(), not_taken, taken)); } FcmpCondResult::OrConditions(cc1, cc2) => { ctx.emit(Inst::jmp_if(cc1, taken)); ctx.emit(Inst::jmp_cond(cc2, taken, not_taken)); } FcmpCondResult::InvertedEqualOrConditions(_, _) => unreachable!(), } } else { // Should be disallowed by flags checks in verifier. unimplemented!("Brff with input not from ffcmp"); } } _ => panic!("unexpected branch opcode: {:?}", op0), } } else { assert_eq!(branches.len(), 1); // Must be an unconditional branch or trap. let op = ctx.data(branches[0]).opcode(); match op { Opcode::Jump => { ctx.emit(Inst::jmp_known(targets[0])); } Opcode::BrTable => { let jt_size = targets.len() - 1; assert!(jt_size <= u32::MAX as usize); let jt_size = jt_size as u32; let ty = ctx.input_ty(branches[0], 0); let idx = extend_input_to_reg( ctx, InsnInput { insn: branches[0], input: 0, }, ExtSpec::ZeroExtendTo32, ); // Emit the compound instruction that does: // // lea $jt, %rA // movsbl [%rA, %rIndex, 2], %rB // add %rB, %rA // j *%rA // [jt entries] // // This must be *one* instruction in the vcode because we cannot allow regalloc // to insert any spills/fills in the middle of the sequence; otherwise, the // lea PC-rel offset to the jumptable would be incorrect. (The alternative // is to introduce a relocation pass for inlined jumptables, which is much // worse.) // This temporary is used as a signed integer of 64-bits (to hold addresses). let tmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); // This temporary is used as a signed integer of 32-bits (for the wasm-table // index) and then 64-bits (address addend). The small lie about the I64 type // is benign, since the temporary is dead after this instruction (and its // Cranelift type is thus unused). let tmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap(); // Put a zero in tmp1. This is needed for Spectre // mitigations (a CMOV that zeroes the index on // misspeculation). let inst = Inst::imm(OperandSize::Size64, 0, tmp1); ctx.emit(inst); // Bounds-check (compute flags from idx - jt_size) // and branch to default. We only support // u32::MAX entries, but we compare the full 64 // bit register when doing the bounds check. let cmp_size = if ty == types::I64 { OperandSize::Size64 } else { OperandSize::Size32 }; ctx.emit(Inst::cmp_rmi_r(cmp_size, RegMemImm::imm(jt_size), idx)); let targets_for_term: Vec = targets.to_vec(); let default_target = targets[0]; let jt_targets: Vec = targets.iter().skip(1).cloned().collect(); ctx.emit(Inst::JmpTableSeq { idx, tmp1, tmp2, default_target, targets: jt_targets, targets_for_term, }); } _ => panic!("Unknown branch type {:?}", op), } } Ok(()) } fn maybe_pinned_reg(&self) -> Option { Some(regs::pinned_reg()) } }