//! Legalize instructions. //! //! A legal instruction is one that can be mapped directly to a machine code instruction for the //! target ISA. The `legalize_function()` function takes as input any function and transforms it //! into an equivalent function using only legal instructions. //! //! The characteristics of legal instructions depend on the target ISA, so any given instruction //! can be legal for one ISA and illegal for another. //! //! Besides transforming instructions, the legalizer also fills out the `function.encodings` map //! which provides a legal encoding recipe for every instruction. //! //! The legalizer does not deal with register allocation constraints. These constraints are derived //! from the encoding recipes, and solved later by the register allocator. use abi::{legalize_abi_value, ValueConversion}; use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, InstBuilder, Ebb, Type, Value, ArgumentType}; use ir::condcodes::IntCC; use isa::{TargetIsa, Legalize}; /// Legalize `func` for `isa`. /// /// - Transform any instructions that don't have a legal representation in `isa`. /// - Fill out `func.encodings`. /// pub fn legalize_function(func: &mut Function, isa: &TargetIsa) { legalize_signatures(func, isa); // TODO: This is very simplified and incomplete. func.encodings.resize(func.dfg.num_insts()); let mut pos = Cursor::new(&mut func.layout); while let Some(_ebb) = pos.next_ebb() { // Keep track of the cursor position before the instruction being processed, so we can // double back when replacing instructions. let mut prev_pos = pos.position(); while let Some(inst) = pos.next_inst() { match isa.encode(&func.dfg, &func.dfg[inst]) { Ok(encoding) => *func.encodings.ensure(inst) = encoding, Err(action) => { // We should transform the instruction into legal equivalents. // Possible strategies are: // 1. Legalize::Expand: Expand instruction into sequence of legal instructions. // Possibly iteratively. () // 2. Legalize::Narrow: Split the controlling type variable into high and low // parts. This applies both to SIMD vector types which can be halved and to // integer types such as `i64` used on a 32-bit ISA. (). // 3. TODO: Promote the controlling type variable to a larger type. This // typically means expressing `i8` and `i16` arithmetic in terms if `i32` // operations on RISC targets. (It may or may not be beneficial to promote // small vector types versus splitting them.) // 4. TODO: Convert to library calls. For example, floating point operations on // an ISA with no IEEE 754 support. let changed = match action { Legalize::Expand => expand(&mut pos, &mut func.dfg), Legalize::Narrow => narrow(&mut pos, &mut func.dfg), }; // If the current instruction was replaced, we need to double back and revisit // the expanded sequence. This is both to assign encodings and possible to // expand further. // There's a risk of infinite looping here if the legalization patterns are // unsound. Should we attempt to detect that? if changed { pos.set_position(prev_pos); } } } // Remember this position in case we need to double back. prev_pos = pos.position(); } } } // Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in // `meta/cretonne/legalize.py`. // // Concretely, this defines private functions `narrow()`, and `expand()`. include!(concat!(env!("OUT_DIR"), "/legalizer.rs")); /// Legalize all the function signatures in `func`. /// /// This changes all signatures to be ABI-compliant with full `ArgumentLoc` annotations. It doesn't /// change the entry block arguments, calls, or return instructions, so this can leave the function /// in a state with type discrepancies. fn legalize_signatures(func: &mut Function, isa: &TargetIsa) { isa.legalize_signature(&mut func.signature); for sig in func.dfg.signatures.keys() { isa.legalize_signature(&mut func.dfg.signatures[sig]); } if let Some(entry) = func.layout.entry_block() { legalize_entry_arguments(func, entry); } } /// Legalize the entry block arguments after `func`'s signature has been legalized. /// /// The legalized signature may contain more arguments than the original signature, and the /// argument types have been changed. This function goes through the arguments to the entry EBB and /// replaces them with arguments of the right type for the ABI. /// /// The original entry EBB arguments are computed from the new ABI arguments by code inserted at /// the top of the entry block. fn legalize_entry_arguments(func: &mut Function, entry: Ebb) { // Insert position for argument conversion code. // We want to insert instructions before the first instruction in the entry block. // If the entry block is empty, append instructions to it instead. let mut pos = Cursor::new(&mut func.layout); pos.goto_top(entry); pos.next_inst(); // Keep track of the argument types in the ABI-legalized signature. let abi_types = &func.signature.argument_types; let mut abi_arg = 0; // Process the EBB arguments one at a time, possibly replacing one argument with multiple new // ones. We do this by detaching the entry EBB arguments first. let mut next_arg = func.dfg.take_ebb_args(entry); while let Some(arg) = next_arg { // Get the next argument before we mutate `arg`. next_arg = func.dfg.next_ebb_arg(arg); let arg_type = func.dfg.value_type(arg); if arg_type == abi_types[abi_arg].value_type { // No value translation is necessary, this argument matches the ABI type. // Just use the original EBB argument value. This is the most common case. func.dfg.put_ebb_arg(entry, arg); abi_arg += 1; } else { // Compute the value we want for `arg` from the legalized ABI arguments. let converted = convert_from_abi(&mut func.dfg, &mut pos, entry, &mut abi_arg, abi_types, arg_type); // The old `arg` is no longer an attached EBB argument, but there are probably still // uses of the value. Make it an alias to the converted value. func.dfg.change_to_alias(arg, converted); } } } /// Compute original value of type `ty` from the legalized ABI arguments beginning at `abi_arg`. /// /// Update `abi_arg` to reflect the ABI arguments consumed and return the computed value. fn convert_from_abi(dfg: &mut DataFlowGraph, pos: &mut Cursor, entry: Ebb, abi_arg: &mut usize, abi_types: &[ArgumentType], ty: Type) -> Value { // Terminate the recursion when we get the desired type. if ty == abi_types[*abi_arg].value_type { return dfg.append_ebb_arg(entry, ty); } // Reconstruct how `ty` was legalized into the argument at `abi_arg`. let conversion = legalize_abi_value(ty, &abi_types[*abi_arg]); // The conversion describes value to ABI argument. We implement the reverse conversion here. match conversion { // Construct a `ty` by concatenating two ABI integers. ValueConversion::IntSplit => { let abi_ty = ty.half_width().expect("Invalid type for conversion"); let lo = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); let hi = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); dfg.ins(pos).iconcat_lohi(lo, hi) } // Construct a `ty` by concatenating two halves of a vector. ValueConversion::VectorSplit => { let abi_ty = ty.half_vector().expect("Invalid type for conversion"); let lo = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); let hi = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); dfg.ins(pos).vconcat(lo, hi) } // Construct a `ty` by bit-casting from an integer type. ValueConversion::IntBits => { assert!(!ty.is_int()); let abi_ty = Type::int(ty.bits()).expect("Invalid type for conversion"); let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); dfg.ins(pos).bitcast(ty, arg) } // ABI argument is a sign-extended version of the value we want. ValueConversion::Sext(abi_ty) => { let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); // TODO: Currently, we don't take advantage of the ABI argument being sign-extended. // We could insert an `assert_sreduce` which would fold with a following `sextend` of // this value. dfg.ins(pos).ireduce(ty, arg) } ValueConversion::Uext(abi_ty) => { let arg = convert_from_abi(dfg, pos, entry, abi_arg, abi_types, abi_ty); // TODO: Currently, we don't take advantage of the ABI argument being sign-extended. // We could insert an `assert_ureduce` which would fold with a following `uextend` of // this value. dfg.ins(pos).ireduce(ty, arg) } } }