* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
* wasmtime_runtime: move ResourceLimiter defaults into this crate
In preparation of changing wasmtime::ResourceLimiter to be a re-export
of this definition, because translating between two traits was causing
problems elsewhere.
* wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter
* refactor Store internals to support ResourceLimiter as part of store's data
* add hooks for entering and exiting native code to Store
* wasmtime-wast, fuzz: changes to adapt ResourceLimiter API
* fix tests
* wrap calls into wasm with entering/exiting exit hooks as well
* the most trivial test found a bug, lets write some more
* store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost
Co-authored-By: Alex Crichton <alex@alexcrichton.com>
* improve tests for the entering/exiting native hooks
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* Add resource limiting to the Wasmtime API.
This commit adds a `ResourceLimiter` trait to the Wasmtime API.
When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.
This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.
A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.
* Code review feedback.
* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
`StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
`wasmtime::Table`.
* Code review feedback and bug fix.
* `Memory::new` now returns `Result<Self>` so that an error can be returned if
the initial requested memory exceeds any limits placed on the store.
* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.
* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
implementations are free to capture any context they want, so no need to
unnecessarily store a weak reference to `Store` from the proxy type.
* Fixed a bug in the pooling instance allocator where an instance would be
leaked from the pool. Previously, this would only have happened if the OS was
unable to make the necessary linear memory available for the instance. With
these changes, however, the instance might not be created due to limits
placed on the store. We now properly deallocate the instance on error.
* Added more tests, including one that covers the fix mentioned above.
* Code review feedback.
* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
`ResourceLimiter`.
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.
This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.
Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.
Part of #929
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
* Use `Linker` in `*.wast` testing
By default `Linker` disallows shadowing previously defined items, but it
looks like the `*.wast` test suites rely on this so this commit adds a
boolean flag to `Linker` as well indicating whether duplicates are
allowed.
* Review comments
* Add a test with a number of recursive instances
* Deny warnings in doctests
* No tabs
* Add a first-class way of accessing caller's exports
This commit is a continuation of #1237 and updates the API of `Func` to
allow defining host functions which have easy access to a caller's
memory in particular. The new APIs look like so:
* The `Func::wrap*` family of functions was condensed into one
`Func::wrap` function.
* The ABI layer of conversions in `WasmTy` were removed
* An optional `Caller<'_>` argument can be at the front of all
host-defined functions now.
The old way the wasi bindings looked up memory has been removed and is
now replaced with the `Caller` type. The `Caller` type has a
`get_export` method on it which allows looking up a caller's export by
name, allowing you to get access to the caller's memory easily, and even
during instantiation.
* Add a temporary note
* Move some docs
* Move `Func` to its own file
* Support `Func` imports with zero shims
This commit extends the `Func` type in the `wasmtime` crate with static
`wrap*` constructors. The goal of these constructors is to create a
`Func` type which has zero shims associated with it, creating as small
of a layer as possible between wasm code and calling imported Rust code.
This is achieved by creating an `extern "C"` shim function which matches
the ABI of what Cranelift will generate, and then the host function is
passed directly into an `InstanceHandle` to get called later. This also
enables enough inlining opportunities that LLVM will be able to see all
functions and inline everything to the point where your function is
called immediately from wasm, no questions asked.
* Document and update the API of the `externals.rs` module
This commit ensures that all public methods and items are documented in
the `externals.rs` module, notably all external values that can be
imported and exported in WebAssembly. Along the way this also tidies up
the API and fixes a few bugs:
* `Global::new` now returns a `Result` and fails if the provided value
does not match the type of the global.
* `Global::set` now returns a `Result` and fails if the global is either
immutable or the provided value doesn't match the type of the global.
* `Table::new` now fails if the provided initializer does not match the
element type.
* `Table::get` now returns `Option<Val>` instead of implicitly returning
null.
* `Table::set` now returns `Result<()>`, returning an error on out of
bounds or if the input type is of the wrong type.
* `Table::grow` now returns `Result<u32>`, returning the previous number
of table elements if succesful or an error if the maximum is reached
or the initializer value is of the wrong type. Additionally a bug was
fixed here where if the wrong initializer was provided the table would
be grown still, but initialization would fail.
* `Memory::data` was renamed to `Memory::data_unchecked_mut`.
Additionally `Memory::data_unchecked` was added. Lots of caveats were
written down about how using the method can go wrong.
* `Memory::grow` now returns `Result<u32>`, returning an error if growth
fails or the number of pages previous the growth if successful.
* Run rustfmt
* Fix another test
* Update crates/api/src/externals.rs
Co-Authored-By: Sergei Pepyakin <s.pepyakin@gmail.com>
Co-authored-by: Sergei Pepyakin <s.pepyakin@gmail.com>
* Remove `HostRef` from the `wasmtime` public API
This commit removes all remaining usages of `HostRef` in the public API
of the `wasmtime` crate. This involved a number of API decisions such
as:
* None of `Func`, `Global`, `Table`, or `Memory` are wrapped in `HostRef`
* All of `Func`, `Global`, `Table`, and `Memory` implement `Clone` now.
* Methods called `type` are renamed to `ty` to avoid typing `r#type`.
* Methods requiring mutability for external items now no longer require
mutability. The mutable reference here is sort of a lie anyway since
the internals are aliased by the underlying module anyway. This
affects:
* `Table::set`
* `Table::grow`
* `Memory::grow`
* `Instance::set_signal_handler`
* The `Val::FuncRef` type is now no longer automatically coerced to
`AnyRef`. This is technically a breaking change which is pretty bad,
but I'm hoping that we can live with this interim state while we sort
out the `AnyRef` story in general.
* The implementation of the C API was refactored and updated in a few
locations to account for these changes:
* Accessing the exports of an instance are now cached to ensure we
always hand out the same `HostRef` values.
* `wasm_*_t` for external values no longer have internal cache,
instead they all wrap `wasm_external_t` and have an unchecked
accessor for the underlying variant (since the type is proof that
it's there). This makes casting back and forth much more trivial.
This is all related to #708 and while there's still more work to be done
in terms of documentation, this is the major bulk of the rest of the
implementation work on #708 I believe.
* More API updates
* Run rustfmt
* Fix a doc test
* More test updates
* Remove the need for `HostRef<Store>`
This commit goes through the public API of the `wasmtime` crate and
removes the need for `HostRef<Store>`, as discussed in #708. This commit
is accompanied with a few changes:
* The `Store` type now also implements `Default`, creating a new
`Engine` with default settings and returning that.
* The `Store` type now implements `Clone`, and is documented as being a
"cheap clone" aka being reference counted. As before there is no
supported way to create a deep clone of a `Store`.
* All APIs take/return `&Store` or `Store` instead of `HostRef<Store>`,
and `HostRef<T>` is left as purely a detail of the C API.
* The `global_exports` function is tagged as `#[doc(hidden)]` for now
while we await its removal.
* The `Store` type is not yet `Send` nor `Sync` due to the usage of
`global_exports`, but it is intended to become so eventually.
* Touch up comments on some examples
* Run rustfmt
* Update the `*.wast` runner to use the `wasmtime` API
This commit migrates the `wasmtime-wast` crate, which executes `*.wast`
test suites, to use the `wasmtime` crate exclusively instead of the raw
support provided by the `wasmtime-*` family of crates.
The primary motivation for this change is to use `*.wast` test to test
the support for interface types, but interface types is only being added
in the `wasmtime` crate for now rather than all throughout the core
crates. This means that without this transition it's much more difficult
to write tests for wasm interface types!
A secondary motivation for this is that it's testing the support we
provide to users through the `wasmtime` crate, since that's the
expectation of what most users would use rather than the raw
`wasmtime-*` crates.
* Run rustfmt
* Fix the multi example
* Handle v128 values in the `wasmtime` crate
Ensure that we allocate 128-bit stack slots instead of 64-bit stack
slots.
* Update to master
* Add comment
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc