* Cranelift: Define `heap_load` and `heap_store` instructions
* Cranelift: Implement interpreter support for `heap_load` and `heap_store`
* Cranelift: Add a suite runtests for `heap_{load,store}`
There are so many knobs we can twist for heaps and I wanted to exhaustively test
all of them, so I wrote a script to generate the tests. I've checked in the
script in case we want to make any changes in the future, but I don't think it
is worth adding this to CI to check that scripts are up to date or anything like
that.
* Review feedback
* cranelift: Cleanup `fdemote`/`fpromote` tests
* cranelift: Fix `fdemote`/`fpromote` instruction docs
The verifier fails if the input and output types are the same
for these instructions
* cranelift: Fix `fdemote`/`fpromote` in the interpreter
* fuzzgen: Add `fdemote`/`fpromote`
* Cranelift: Make `heap_addr` return calculated `base + index + offset`
Rather than return just the `base + index`.
(Note: I've chosen to use the nomenclature "index" for the dynamic operand and
"offset" for the static immediate.)
This move the addition of the `offset` into `heap_addr`, instead of leaving it
for the subsequent memory operation, so that we can Spectre-guard the full
address, and not allow speculative execution to read the first 4GiB of memory.
Before this commit, we were effectively doing
load(spectre_guard(base + index) + offset)
Now we are effectively doing
load(spectre_guard(base + index + offset))
Finally, this also corrects `heap_addr`'s documented semantics to say that it
returns an address that will trap on access if `index + offset + access_size` is
out of bounds for the given heap, rather than saying that the `heap_addr` itself
will trap. This matches the implemented behavior for static memories, and after
https://github.com/bytecodealliance/wasmtime/pull/5190 lands (which is blocked
on this commit) will also match the implemented behavior for dynamic memories.
* Update heap_addr docs
* Factor out `offset + size` to a helper
This branch removes the trapif and trapff instructions, in favor of using an explicit comparison and trapnz. This moves us closer to removing iflags and fflags, but introduces the need to implement instructions like iadd_cout in the x64 and aarch64 backends.
- Allow bitcast for vectors with differing lane widths
- Remove raw_bitcast IR instruction
- Change all users of raw_bitcast to bitcast
- Implement support for no-op bitcast cases across backends
This implements the second step of the plan outlined here:
https://github.com/bytecodealliance/wasmtime/issues/4566#issuecomment-1234819394
Adds Bswap to the Cranelift IR. Implements the Bswap instruction
in the x64 and aarch64 codegen backends. Cranelift users can now:
```
builder.ins().bswap(value)
```
to get a native byteswap instruction.
* x64: implements the 32- and 64-bit bswap instruction, following
the pattern set by similar unary instrutions (Neg and Not) - it
only operates on a dst register, but is parameterized with both
a src and dst which are expected to be the same register.
As x64 bswap instruction is only for 32- or 64-bit registers,
the 16-bit swap is implemented as a rotate left by 8.
Updated x64 RexFlags type to support emitting for single-operand
instructions like bswap
* aarch64: Bswap gets emitted as aarch64 rev16, rev32,
or rev64 instruction as appropriate.
* s390x: Bswap was already supported in backend, just had to add
a bit of plumbing
* For completeness, added bswap to the interpreter as well.
* added filetests and runtests for each ISA
* added bswap to fuzzgen, thanks to afonso360 for the code there
* 128-bit swaps are not yet implemented, that can be done later
Add a new instruction uadd_overflow_trap, which is a fused version of iadd_ifcout and trapif. Adding this instruction removes a dependency on the iflags type, and would allow us to move closer to removing it entirely.
The instruction is defined for the i32 and i64 types only, and is currently only used in the legalization of heap_addr.
As discussed in the 2022/10/19 meeting, this PR removes many of the branch and select instructions that used iflags, in favor if using brz/brnz and select in their place. Additionally, it reworks selectif_spectre_guard to take an i8 input instead of an iflags input.
For reference, the removed instructions are: br_icmp, brif, brff, trueif, trueff, and selectif.
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
* Leverage Cargo's workspace inheritance feature
This commit is an attempt to reduce the complexity of the Cargo
manifests in this repository with Cargo's workspace-inheritance feature
becoming stable in Rust 1.64.0. This feature allows specifying fields in
the root workspace `Cargo.toml` which are then reused throughout the
workspace. For example this PR shares definitions such as:
* All of the Wasmtime-family of crates now use `version.workspace =
true` to have a single location which defines the version number.
* All crates use `edition.workspace = true` to have one default edition
for the entire workspace.
* Common dependencies are listed in `[workspace.dependencies]` to avoid
typing the same version number in a lot of different places (e.g. the
`wasmparser = "0.89.0"` is now in just one spot.
Currently the workspace-inheritance feature doesn't allow having two
different versions to inherit, so all of the Cranelift-family of crates
still manually specify their version. The inter-crate dependencies,
however, are shared amongst the root workspace.
This feature can be seen as a method of "preprocessing" of sorts for
Cargo manifests. This will help us develop Wasmtime but shouldn't have
any actual impact on the published artifacts -- everything's dependency
lists are still the same.
* Fix wasi-crypto tests
We weren't using the "union" cargo feature for the smallvec crate, which
reduces the size of a SmallVec by one machine word. This feature
requires Rust 1.49 but we already require much newer versions.
When using Wasmtime to compile pulldown-cmark from Sightglass, this
saves a decent amount of memory allocations and writes. According to
`valgrind --tool=dhat`:
- 6.2MiB (3.69%) less memory allocated over the program's lifetime
- 0.5MiB (4.13%) less memory allocated at maximum heap size
- 5.5MiB (1.88%) fewer bytes written to
- 0.44% fewer instructions executed
Sightglass reports a statistically significant runtime improvement too:
compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm
Δ = 24379323.60 ± 20051394.04 (confidence = 99%)
shrink-abiarg-0406da67c.so is 1.01x to 1.13x faster than main-be690a468.so!
[227506364 355007998.78 423280514] main-be690a468.so
[227686018 330628675.18 406025344] shrink-abiarg-0406da67c.so
compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm
Δ = 360151622.56 ± 278294316.90 (confidence = 99%)
shrink-abiarg-0406da67c.so is 1.01x to 1.07x faster than main-be690a468.so!
[8709162212 8911001926.44 9535111576] main-be690a468.so
[5058015392 8550850303.88 9282148438] shrink-abiarg-0406da67c.so
compilation :: cycles :: benchmarks/bz2/benchmark.wasm
Δ = 6936570.28 ± 6897696.38 (confidence = 99%)
shrink-abiarg-0406da67c.so is 1.00x to 1.08x faster than main-be690a468.so!
[155810934 175260571.20 234737344] main-be690a468.so
[119128240 168324000.92 257451074] shrink-abiarg-0406da67c.so
Ported the existing implementations of the following opcodes for AArch64
to ISLE:
- `Trueif`
- `Trueff`
- `Trapif`
- `Trapff`
- `Select`
- `Selectif`
- `SelectifSpectreGuard`
Copyright (c) 2022 Arm Limited
* Vector bitcast support (AArch64 & Interpreter)
Implemented support for `bitcast` on vector values for AArch64 and the
interpreter.
Also corrected the verifier to ensure that the size, in bits, of the input and
output types match for a `bitcast`, per the docs.
Copyright (c) 2022 Arm Limited
* `I128` same-type bitcast support
Copyright (c) 2022 Arm Limited
* Directly return input for 64-bit GPR<=>GPR bitcast
Copyright (c) 2022 Arm Limited
* cranelift: Remove of/nof overflow flags from icmp
Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.
Fixes#3060, fixes#4406, and fixes #4875... by deleting all the code
that could have been buggy.
This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.
* Restore trapif tests
It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
This commit replaces #4869 and represents the actual version bump that
should have happened had I remembered to bump the in-tree version of
Wasmtime to 1.0.0 prior to the branch-cut date. Alas!
* cranelift-codegen: Remove all uses of DataValue
This type is only used by the interpreter, cranelift-fuzzgen, and
filetests. I haven't found another convenient crate for those to all
depend on where this type can live instead, but this small refactor at
least makes it obvious that code generation does not in any way depend
on the implementation of this type.
* Make DataValue, not Ieee32/64, respect IEEE754
This fixes#4857 by partially reverting #4849.
It turns out that Ieee32 and Ieee64 need bitwise equality semantics so
they can be used as hash-table keys.
Moving the IEEE754 semantics up a layer to DataValue makes sense in
conjunction with #4855, where we introduced a DataValue::bitwise_eq
alternative implementation of equality for those cases where users of
DataValue still want the bitwise equality semantics.
* cranelift-interpreter: Use eq/ord from DataValue
This fixes#4828, again, now that the comparison operators on DataValue
have the right IEEE754 semantics.
* Add regression test from issue #4857
* cranelift: Add `fcmp` tests
Some of these are disabled on aarch64 due to not being implemented yet.
* cranelift: Implement float PartialEq for Ieee{32,64} (fixes#4828)
Previously `PartialEq` was auto derived. This means that it was implemented in terms of PartialEq in a u32.
This is not correct for floats because `NaN != NaN`.
PartialOrd was manually implemented in 6d50099816, but it seems like it was an oversight to leave PartialEq out until now.
The test suite depends on the previous behaviour so we adjust it to keep comparing bits instead of floats.
* cranelift: Disable `fcmp ord` tests on aarch64
* cranelift: Disable `fcmp ueq` tests on aarch64
* cranelift: Implement `bnot` in interpreter
* cranelift: Register all functions in test file for interpreter
* cranelift: Relax signature checking for bools and vectors
* Port `Fcopysign`..``FcvtToSintSat` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `Fcopysign`
- Also introduced missing support for `fcopysign` on vector values, as
per the docs.
- This introduces the vector encoding for the `SLI` machine
instruction.
- `FcvtToUint`
- `FcvtToSint`
- `FcvtFromUint`
- `FcvtFromSint`
- `FcvtToUintSat`
- `FcvtToSintSat`
Copyright (c) 2022 Arm Limited
* Document helpers and abstract conversion checks
* Port `vconst` to ISLE (AArch64)
Ported the existing implementation of `vconst` to ISLE for AArch64, and
added support for 64-bit vector constants.
Also introduced 64-bit `vconst` support to the interpreter.
Copyright (c) 2022 Arm Limited
* Replace if-chains with match statements
Copyright (c) 2022 Arm Limited
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
In #4375 we introduced a code pattern that appears as a warning when
building the `cranelift-interpreter` crate:
```
warning: cannot borrow `*state` as mutable because it is also borrowed as immutable
--> cranelift/interpreter/src/step.rs:412:13
|
47 | let arg = |index: usize| -> Result<V, StepError> {
| -------------------------------------- immutable borrow occurs here
48 | let value_ref = inst_context.args()[index];
49 | state
| ----- first borrow occurs due to use of `*state` in closure
...
412 | state.set_pinned_reg(arg(0)?);
| ^^^^^^^^^^^^^^^^^^^^^---^^^^^
| | |
| | immutable borrow later used here
| mutable borrow occurs here
|
= note: `#[warn(mutable_borrow_reservation_conflict)]` on by default
= warning: this borrowing pattern was not meant to be accepted, and may become a hard error in the future
= note: for more information, see issue #59159 <https://github.com/rust-lang/rust/issues/59159>
```
This change fixes the warning.
* cranelift: Upgrade libm to 0.2.4
This resolves an issue with incorrect fmaf on the x86_64-pc-windows-gnu target under some inputs.
See: #4517
* supply-chain: Vet `libm` 0.2.4
* Convert `fma`, `valltrue` & `vanytrue` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `fma`
- Introduced missing support for `fma` on vector values, as per the
docs.
- `valltrue`
- `vanytrue`
Also fixed `fcmp` on scalar values in the interpreter, and enabled
interpreter tests in `simd-fma.clif`.
This introduces the `FMLA` machine instruction.
Copyright (c) 2022 Arm Limited
* Add comments for `Fmla` and `Bsl`
Copyright (c) 2022 Arm Limited
* Cranelift: Add instructions for getting the current stack/frame pointers and return address
This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535
* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead
We just special case getting operands from `Amode`s now.
* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`
* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp
* Handle non-allocatable registers in Amode::with_allocs
* Use "stack" instead of "r15" on s390x
* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* cranelift: Add MinGW `fma` regression tests
* cranelift: Fix FMA in interpreter
* cranelift: Add separate `fma` test suite for the interpreter
The interpreter can run `fma.clif` on most platforms, however on
`x86_64-pc-windows-gnu` we use libm which has issues with some inputs.
We should delete `fma-interpreter.clif` and enable the interpreter on
the main `fma.clif` file once those are fixed.