This makes it possible to define register banks that opt out of register
pressure tracking. This will be used to define banks for special-purpose
registers like the CPU flags.
The pressure tracker does not need to use resources for a top-level
register class in a non-tracked bank. The constant MAX_TOPRCS is renamed
to MAX_TRACKED_TOPRCS to indicate that there may be top-level register
classes with higher numbers, but they won't require pressure tracking.
We won't be tracking register pressure for CPU flags since only one
value is allowed to be live at a time.
This is needed to allow implementations to have 'data-lifetime
references if they choose to. The DummyEnvironment is an example of an
implementation that doesn't choose to.
Add integer and floating comparison instructions that return CPU flags:
ifcmp, ifcmp_imm, and ffcmp.
Add conditional branch instructions that check CPU flags: brif, brff
Add instructions that check a condition in the CPU flags and return a
b1: trueif, trueff.
These two value types represent the state of CPU flags after an integer
comparison and a floating point comparison respectively.
Instructions using these types TBD.
The value types are now classified into three groups:
1. Lane types are scalar types that can also be used to form vectors.
2. Vector types 2-256 copies of a lane type.
3. Special types. This is where the CPU flag types will go.
The special types can't be used to form vectors.
Change the numbering scheme for value types to make room for the special
types and add `is_lane()` and `is_special()` classification methods.
The VOID type still has number 0, but it can no longer appear as a
vector lane. It classifies as special now.
The word "scalar" is a bit vague and tends to mean "non-vector". Since
we are about to add new CPU flag value types that can't appear as vector
lanes, make the distinction clear: LaneType represents value types that
can appear as a vector lane.
Also replace the Type::is_scalar() method with an is_vector() method.
Track allocatable registers both locally and globally: Add a second
AllocatableSet which tracks registers allocated to global values without
accounting for register diversions. Since diversions are only local to
an EBB, global values must be assigned un-diverted locations that don't
interfere.
Handle the third "global" interference domain in the constraint solver in
addition to the existing "input" and "output" domains.
Extend the solver error code to indicate when a global define just can't
be allocated because there are not enough available global registers.
Resolve this problem by replacing the instruction's global defines with
local defines that are copied into their global destinations
afterwards.
The register allocator can't handle branches with constrained register
operands, and the brz.b1/brnz.b1 instructions only have the t8jccd_abcd
in 32-bit mode where no REX prefixes are possible.
This adds a worst case encoding for those cases where a b1 value lives
in a non-ABCD register.
These spills and fills use 32-bit writes, knowing that the spill slot is
minimum 4 bytes which makes it safe.
Also simplify the definition of load/store encodings a bit by
introducing loops.
This is primarily for the benefit of 32-bit x86 code which can't spill
1-byte types from arbitrary registers. This makes it possible to use
32-bit writes to spill types like b1 and i8.
These small types are expected to be very rare since WebAssembly doesn't
have then, and we tend to push integer arithmetic to at least i32. The
effect of frame sizes should be minimal.
This renames WasmRuntime to ModuleEnvironment, and makes several changes
to allow for more flexible compilation.
ModuleEnvironment no longer derives from FuncEnvironment, and no longer
has the `begin_translation` and `next_translation` functions, so that
independent `FuncEnvironment` instances can operate within the same
module.
Also, this obviates the rest of TranslationResult, as it moves processing
of function bodies into the environment. The DummyEnvironment implementation
gives an example of decoding the function bodies as they are parsed, however
other implementation strategies are now possible.
Also, redo how functions are named in the DummyRuntime. Use the FunctionName
field to just encode the wasm function index rather than trying to shoehorn
a printable name into it. And to make up for that, teach the wasm printer
to print export names as comments next to the function definitions.
This also makes the fields of DummyRuntime public, in preparation for
the DummyRuntime to have a more general-purpose debugging role, as well
as possibly to allow it to serve as a base for other implementations.
This makes it more consistent with how all the rest of the content of
a wasm module is handled. And, now TranslationResult just has a Vec
of translated functions, which will make it easier to refactor further.
The register allocator doesn't even try to compile unreachable EBBs, so
any values defined in such blocks won't be assigned registers.
Since the dominator tree already has determined which EBBs are
reachable, we should just eliminate any unreachable blocks instead o
trying to do something with the dead code.
Not that this is not a "dead code elimination" pass which would also
remove individual instructions whose results are not used.
During iterate_solution(), live-through values may be converted to
solver variables so they can be moved out of the way in order to satisfy
all constraints. Make sure that the instruction's operand constraints
are also considered for these new variables.
Add a program_complete_input_constraints() which turns all the
instruction's input operands into variables with the proper constraints.
That makes it safe for try_add_var() to re-add these values as variables
with looser generic constraints.
The solver's add_var() function is split into three functions: add_var
for use before inputs_done(), and add_killed_var/add_through_var for use
after.
Most recipes with an ABCD constraint can handle the full GPR register
class when a REX prefix is applied, but not all. The "icscc" macro
recipe always generates a setCC instruction with no REX prefix, so it
can only write the ABCD registers, even in its REX form.
Don't automatically rewrite ABCD constraints to GPR constraints when
applying a REX prefix to a tail recipe. Instead, allow individual ABCD
recipes to specify a "when_prefixed" alternative recipe to use. This
also eliminates the spurious Rex*abcd recipe names which didn't have an
ABCD constraint.
Also allow recipes to specify that a REX prefix is required by setting
the prefix_required flag. This is used by recipes like t8jccb which
explicitly accesses an 8-bit register with a GPR constraint which is
only valid with a prefix.
When solver variables represent operands on the current instruction,
they need to be constrained as required by the instructions, but
variables that are simply moved out of the way should only be
constrained to their top-level register class. The live range affinity
is just a hint, not a requirement.
When try_add_var is looking for values that can be moved out of the way
in order to satisfy constraints for the current instruction, avoid
values that are live on a CFG edge originating at the current (branch)
instruction.
These values must be in their globally assigned location when entering
the branch destination EBB.
This is covered by the existing regalloc/iterate.cton test case which
fails with an upcoming commit.
- Create a new kind of stack slot: emergency_slot.
- Add a get_emergency_slot() method which finds a suitable emergency
slot given a list of slots already in use.
- Use emergency spill slots when schedule_moves needs them.
This method was important back when result values couldn't be moved
between instructions. Now that results can be moved, value aliases do
everything we need.
Copy instructions are still used to break interferences in the register
allocator's coalescing phase, but there isn't really any reason to use a
copy instruction over a value alias anywhere else.
After and during register allocation, copy instructions are significant,
so we never want to "see through" them like the resolve_copies()
function did.
This is related to #166, but probably doesn't fix the underlying
problem.
This is a verification pass that can be run after register allocation.
It verifies that value locations are consistent with constraints on
their uses, and that the register diversions are consistent.
Make it clear that register diversions are local to an EBB only. This
affects what branch relaxation is allowed to do.
The verify_locations() takes an optional Liveness parameter which is
used to check that no diverted values are live across CFG edges.
When "binemit" tests encode instructions, keep track of the current set
of register diversions, and use the diverted locations to check operand
constraints.
This matches how constraints are applied during a real binemit phase.
These are parallels to the existing regmove instruction, but the divert
the value to and from a stack slot.
Like regmove diversions, this is a temporary diversion that must be
local to the EBB.
The register constraint solver schedules a set of move instructions to
execute before the instruction getting colored. In extreme cases, this
is not possible because there are no available registers to break cycles
in the register assignments that must be scheduled.
When that happens, we spill one register to an emergency slot so it
becomes available for implementing the assignment cycle. Then the
original register is restored.
The coloring pass can't yet understand the spill and fill move types.
This will be implemented next.
This makes it possible to materialize new RegClass references without
requiring a RegInfo reference to be passed around.
- Move the RegInfo::toprc() method to RegClassData.
- Rename RegClassData::intersect() to intersect_index() and provide a
new intersect() which returns a register class.
- Remove some &RegInfo parameters that are no longer needed.
Fixes#165.
The constraint solver's schedule_move() function sometimes need to use
an extra available register when the moves to be scheduled contains
cycles.
The pending moves have associated register classes that come from the
constraint programming. Since the moves have hard-coded to and from
registers, these register classes are only meant to indicate the
register sizes. In particular, we can use the whole top-level register
class when scavenging for a spare register to break a cycle.
The controlling type variable passed to the format constructor in the
InstBuilder trait is not just used to generate the result values. In an
EncCursor, it is also used to encode the instruction, so VOID doesn't
work.