This updates to rustix 0.35.6, and updates wasi-common to use cap-std 0.25 and
windows-sys (instead of winapi).
Changes include:
- Better error code mappings on Windows.
- Fixes undefined references to `utimensat` on Darwin.
- Fixes undefined references to `preadv64` and `pwritev64` on Android.
- Updates to io-lifetimes 0.7, which matches the io_safety API in Rust.
- y2038 bug fixes for 32-bit platforms
Relevant to Wasmtime, this fixes undefined references to `utimensat` and
`futimens` on macOS 10.12 and earlier. See bytecodealliance/rustix#157
for details.
It also contains a fix for s390x which isn't currently needed by Wasmtime
itself, but which is needed to make rustix's own testsuite pass on s390x,
which helps people packaging rustix for use in Wasmtime. See
bytecodealliance/rustix#277 for details.
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Bump to 0.36.0
* Add a two-week delay to Wasmtime's release process
This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:
* In #3915 it was realized that changes just before the 0.35.0 release
weren't enough for an embedding use case, but the PR didn't meet the
expectations for a full patch release.
* At Fastly we were about to start rolling out a new version of Wasmtime
when over the weekend the fuzz bug #3951 was found. This led to the
desire internally to have a "must have been fuzzed for this long"
period of time for Wasmtime changes which we felt were better
reflected in the release process itself rather than something about
Fastly's own integration with Wasmtime.
This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.
Overall there are some new properties about Wasmtime with this proposal
as well:
* The `main` branch will always have a section in `RELEASES.md` which is
listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
release. For example it will be bump pre-emptively as part of the
release process on the 5th where if `release-2.0.0` was created then
the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
`RELEASES.md` notes.
The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.
* Add notes on a security patch
* Clarify security fixes shouldn't be previewed early on CI
* Update to rustix 0.33.5, to fix a link error on Android
This updates to rustix 0.33.5, which includes bytecodealliance/rustix#258,
which fixes bytecodealliance/rustix#256, a link error on Android.
Fixes#3965.
* Bump the rustix versions in the Cargo.toml files too.
Following up on #3696, use the new is-terminal crate to test for a tty
rather than having platform-specific logic in Wasmtime. The is-terminal
crate has a platform-independent API which takes a handle.
This also updates the tree to cap-std 0.24 etc., to avoid depending on
multiple versions of io-lifetimes at once, as enforced by the cargo deny
check.
* Update to cap-std 0.22.0.
The main change relevant to Wasmtime here is that this includes the
rustix fix for compilation errors on Rust nightly with the `asm!` macro.
* Add itoa to deny.toml.
* Update the doc and fuzz builds to the latest Rust nightly.
* Update to libc 0.2.112 to pick up the `POLLRDHUP` fix.
* Update to cargo-fuzz 0.11, for compatibility with Rust nightly.
This appears to be the fix for rust-fuzz/cargo-fuzz#277.
This pulls in a fix for Android, where Android's seccomp policy on older
versions is to make `openat2` irrecoverably crash the process, so we have
to do a version check up front rather than relying on `ENOSYS` to
determine if `openat2` is supported.
And it pulls in the fix for the link errors when multiple versions of
rsix/rustix are linked in.
And it has updates for two crate renamings: rsix has been renamed to
rustix, and unsafe-io has been renamed to io-extras.
* Use rsix to make system calls in Wasmtime.
`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:
- It eliminates some `unsafe` blocks in Wasmtime's code. There's
still an `unsafe` block in the library, but this way, the `unsafe`
is factored out and clearly scoped.
- And, it makes error handling more consistent, factoring out code for
checking return values and `io::Error::last_os_error()`, and code that
does `errno::set_errno(0)`.
This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
* Implement support for `async` functions in Wasmtime
This is an implementation of [RFC 2] in Wasmtime which is to support
`async`-defined host functions. At a high level support is added by
executing WebAssembly code that might invoke an asynchronous host
function on a separate native stack. When the host function's future is
not ready we switch back to the main native stack to continue execution.
There's a whole bunch of details in this commit, and it's a bit much to
go over them all here in this commit message. The most important changes
here are:
* A new `wasmtime-fiber` crate has been written to manage the low-level
details of stack-switching. Unixes use `mmap` to allocate a stack and
Windows uses the native fibers implementation. We'll surely want to
refactor this to move stack allocation elsewhere in the future. Fibers
are intended to be relatively general with a lot of type paremters to
fling values back and forth across suspension points. The whole crate
is a giant wad of `unsafe` unfortunately and involves handwritten
assembly with custom dwarf CFI directives to boot. Definitely deserves
a close eye in review!
* The `Store` type has two new methods -- `block_on` and `on_fiber`
which bridge between the async and non-async worlds. Lots of unsafe
fiddly bits here as we're trying to communicate context pointers
between disparate portions of the code. Extra eyes and care in review
is greatly appreciated.
* The APIs for binding `async` functions are unfortunately pretty ugly
in `Func`. This is mostly due to language limitations and compiler
bugs (I believe) in Rust. Instead of `Func::wrap` we have a
`Func::wrapN_async` family of methods, and we've also got a whole
bunch of `Func::getN_async` methods now too. It may be worth
rethinking the API of `Func` to try to make the documentation page
actually grok'able.
This isn't super heavily tested but the various test should suffice for
engaging hopefully nearly all the infrastructure in one form or another.
This is just the start though!
[RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2
* Add wasmtime-fiber to publish script
* Save vector/float registers on ARM too.
* Fix a typo
* Update lock file
* Implement periodically yielding with fuel consumption
This commit implements APIs on `Store` to periodically yield execution
of futures through the consumption of fuel. When fuel runs out a
future's execution is yielded back to the caller, and then upon
resumption fuel is re-injected. The goal of this is to allow cooperative
multi-tasking with futures.
* Fix compile without async
* Save/restore the frame pointer in fiber switching
Turns out this is another caller-saved register!
* Simplify x86_64 fiber asm
Take a leaf out of aarch64's playbook and don't have extra memory to
load/store these arguments, instead leverage how `wasmtime_fiber_switch`
already loads a bunch of data into registers which we can then
immediately start using on a fiber's start without any extra memory
accesses.
* Add x86 support to wasmtime-fiber
* Add ARM32 support to fiber crate
* Make fiber build file probing more flexible
* Use CreateFiberEx on Windows
* Remove a stray no-longer-used trait declaration
* Don't reach into `Caller` internals
* Tweak async fuel to eventually run out.
With fuel it's probably best to not provide any way to inject infinite
fuel.
* Fix some typos
* Cleanup asm a bit
* Use a shared header file to deduplicate some directives
* Guarantee hidden visibility for functions
* Enable gc-sections on macOS x86_64
* Add `.type` annotations for ARM
* Update lock file
* Fix compile error
* Review comments