This introduces two changes:
- first, a Cargo feature is added to make it possible to use the
Cranelift x64 backend directly from wasmtime's CLI.
- second, when passing a `cranelift-flags` parameter, and the given
parameter's name doesn't exist at the target-independent flag level, try
to set it as a target-dependent setting.
These two changes make it possible to try out the new x64 backend with:
cargo run --features experimental_x64 -- run --cranelift-flags use_new_backend=true -- /path/to/a.wasm
Right now, this will fail because most opcodes required by the
trampolines are actually not implemented yet.
This commit enables `wasmtime_runtime::Table` to internally hold elements of
either `funcref` (all that is currently supported) or `externref` (newly
introduced in this commit).
This commit updates `Table`'s API, but does NOT generally propagate those
changes outwards all the way through the Wasmtime embedding API. It only does
enough to get everything compiling and the current test suite passing. It is
expected that as we implement more of the reference types spec, we will bubble
these changes out and expose them to the embedding API.
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929Fixes#1804
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
In the `ModuleEnvironment::declare_signature` callback, also pass the original
Wasm function signature, so that consumers may associate this information with
each compiled function. This is often necessary because while each Wasm
signature gets compiled down into a single native signature, multiple Wasm
signatures might compile down into the same native signature, and in these cases
the original Wasm signature is required for dynamic type checking of calls.
`VMExternRef` is a reference-counted box for any kind of data that is
external and opaque to running Wasm. Sometimes it might hold a Wasmtime
thing, other times it might hold something from a Wasmtime embedder and is
opaque even to us. It is morally equivalent to `Rc<dyn Any>` in Rust, but
additionally always fits in a pointer-sized word. `VMExternRef` is
non-nullable, but `Option<VMExternRef>` is a null pointer.
The one part of `VMExternRef` that can't ever be opaque to us is the
reference count. Even when we don't know what's inside an `VMExternRef`, we
need to be able to manipulate its reference count as we add and remove
references to it. And we need to do this from compiled Wasm code, so it must
be `repr(C)`!
`VMExternRef` itself is just a pointer to an `VMExternData`, which holds the
opaque, boxed value, its reference count, and its vtable pointer.
The `VMExternData` struct is *preceded* by the dynamically-sized value boxed
up and referenced by one or more `VMExternRef`s:
```ignore
,-------------------------------------------------------.
| |
V |
+----------------------------+-----------+-----------+ |
| dynamically-sized value... | ref_count | value_ptr |---'
+----------------------------+-----------+-----------+
| VMExternData |
+-----------------------+
^
+-------------+ |
| VMExternRef |-------------------+
+-------------+ |
|
+-------------+ |
| VMExternRef |-------------------+
+-------------+ |
|
... ===
|
+-------------+ |
| VMExternRef |-------------------'
+-------------+
```
The `value_ptr` member always points backwards to the start of the
dynamically-sized value (which is also the start of the heap allocation for
this value-and-`VMExternData` pair). Because it is a `dyn` pointer, it is
fat, and also points to the value's `Any` vtable.
The boxed value and the `VMExternRef` footer are held a single heap
allocation. The layout described above is used to make satisfying the
value's alignment easy: we just need to ensure that the heap allocation used
to hold everything satisfies its alignment. It also ensures that we don't
need a ton of excess padding between the `VMExternData` and the value for
values with large alignment.
About half of the `FuncEnvironment::translate_table_*` methods were using the
`TableIndex` newtype, while the other half were using raw `u32`s. This commit
makes everything use `TableIndex`.
This patch includes:
- A complete rework of the way that CLIF blocks and edge blocks are
lowered into VCode blocks. The new mechanism in `BlockLoweringOrder`
computes RPO over the CFG, but with a twist: it merges edge blocks intto
heads or tails of original CLIF blocks wherever possible, and it does
this without ever actually materializing the full nodes-plus-edges
graph first. The backend driver lowers blocks in final order so
there's no need to reshuffle later.
- A new `MachBuffer` that replaces the `MachSection`. This is a special
version of a code-sink that is far more than a humble `Vec<u8>`. In
particular, it keeps a record of label definitions and label uses,
with a machine-pluggable `LabelUse` trait that defines various types
of fixups (basically internal relocations).
Importantly, it implements some simple peephole-style branch rewrites
*inline in the emission pass*, without any separate traversals over
the code to use fallthroughs, swap taken/not-taken arms, etc. It
tracks branches at the tail of the buffer and can (i) remove blocks
that are just unconditional branches (by redirecting the label), (ii)
understand a conditional/unconditional pair and swap the conditional
polarity when it's helpful; and (iii) remove branches that branch to
the fallthrough PC.
The `MachBuffer` also implements branch-island support. On
architectures like AArch64, this is needed to allow conditional
branches within plausibly-attainable ranges (+/- 1MB on AArch64
specifically). It also does this inline while streaming through the
emission, without any sort of fixpoint algorithm or later moving of
code, by simply tracking outstanding references and "deadlines" and
emitting an island just-in-time when we're in danger of going out of
range.
- A rework of the instruction selector driver. This is largely following
the same algorithm as before, but is cleaned up significantly, in
particular in the API: the machine backend can ask for an input arg
and get any of three forms (constant, register, producing
instruction), indicating it needs the register or can merge the
constant or producing instruction as appropriate. This new driver
takes special care to emit constants right at use-sites (and at phi
inputs), minimizing their live-ranges, and also special-cases the
"pinned register" to avoid superfluous moves.
Overall, on `bz2.wasm`, the results are:
wasmtime full run (compile + runtime) of bz2:
baseline: 9774M insns, 9742M cycles, 3.918s
w/ changes: 7012M insns, 6888M cycles, 2.958s (24.5% faster, 28.3% fewer insns)
clif-util wasm compile bz2:
baseline: 2633M insns, 3278M cycles, 1.034s
w/ changes: 2366M insns, 2920M cycles, 0.923s (10.7% faster, 10.1% fewer insns)
All numbers are averages of two runs on an Ampere eMAG.
There was a bug how value labels were resolved, which caused some DWARF expressions not be transformed, e.g. those are in the registers.
* Implements FIXME in expression.rs
* Move TargetIsa from CompiledExpression structure
* Fix expression format for GDB
* Add tests for parsing
* Proper logic in ValueLabelRangesBuilder::process_label
* Tests for ValueLabelRangesBuilder
* Refactor build_with_locals to return Iterator instead of Vec<_>
* Misc comments and magical numbers
* Expose memory-related options in `Config`
This commit was initially motivated by looking more into #1501, but it
ended up balooning a bit after finding a few issues. The high-level
items in this commit are:
* New configuration options via `wasmtime::Config` are exposed to
configure the tunable limits of how memories are allocated and such.
* The `MemoryCreator` trait has been updated to accurately reflect the
required allocation characteristics that JIT code expects.
* A bug has been fixed in the cranelift wasm code generation where if no
guard page was present bounds checks weren't accurately performed.
The new `Config` methods allow tuning the memory allocation
characteristics of wasmtime. Currently 64-bit platforms will reserve 6GB
chunks of memory for each linear memory, but by tweaking various config
options you can change how this is allocate, perhaps at the cost of
slower JIT code since it needs more bounds checks. The methods are
intended to be pretty thoroughly documented as to the effect they have
on the JIT code and what values you may wish to select. These new
methods have been added to the spectest fuzzer to ensure that various
configuration values for these methods don't affect correctness.
The `MemoryCreator` trait previously only allocated memories with a
`MemoryType`, but this didn't actually reflect the guarantees that JIT
code expected. JIT code is generated with an assumption about the
minimum size of the guard region, as well as whether memory is static or
dynamic (whether the base pointer can be relocated). These properties
must be upheld by custom allocation engines for JIT code to perform
correctly, so extra parameters have been added to
`MemoryCreator::new_memory` to reflect this.
Finally the fuzzing with `Config` turned up an issue where if no guard
pages present the wasm code wouldn't correctly bounds-check memory
accesses. The issue here was that with a guard page we only need to
bounds-check the first byte of access, but without a guard page we need
to bounds-check the last byte of access. This meant that the code
generation needed to account for the size of the memory operation
(load/store) and use this as the offset-to-check in the no-guard-page
scenario. I've attempted to make the various comments in cranelift a bit
more exhaustive too to hopefully make it a bit clearer for future
readers!
Closes#1501
* Review comments
* Update a comment
* Implement trap info in Lightbeam
* Start using wasm-reader instead of wasmparser for parsing operators
* Update to use wasm-reader, some reductions in allocation, support source location tracking for traps, start to support multi-value
The only thing that still needs to be supported for multi-value is stack returns, but we need to make it compatible with Cranelift.
* Error when running out of registers (although we'd hope it should be impossible) instead of panicking
* WIP: Update Lightbeam to work with latest Wasmtime
* WIP: Update Lightbeam to use current wasmtime
* WIP: Migrate to new system for builtin functions
* WIP: Update Lightbeam to work with latest Wasmtime
* Remove multi_mut
* Format
* Fix some bugs around arguments, add debuginfo offset tracking
* Complete integration with new Wasmtime
* Remove commented code
* Fix formatting
* Fix warnings, remove unused dependencies
* Fix `iter` if there are too many elements, fix compilation for latest wasmtime
* Fix float arguments on stack
* Remove wasm-reader and trap info work
* Allocate stack space _before_ passing arguments, fail if we can't zero a xmm reg
* Fix stack argument offset calculation
* Fix stack arguments in Lightbeam
* Re-add WASI because it somehow got removed during rebase
* Workaround for apparent `type_alias_impl_trait`-related bug in rustdoc
* Fix breakages caused by rebase, remove module offset info as it is unrelated to wasmtime integration PR and was broken by rebase
* Add TODO comment explaining `lightbeam::ModuleContext` trait
This change adds SourceLoc information per instruction in a `VCode<Inst>`
container, and keeps this information up-to-date across register allocation
and branch reordering. The information is initially collected during
instruction lowering, eventually collected on the MachSection, and finally
provided to the environment that wraps the codegen crate for wasmtime.
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
The current build of wasmtime on aarch64 panics immediately because the
debug infrastructure constructs an address-to-instruction map
unconditionally now, and the new backend does not yet support debug info
generally (#1523). In this particular case, the address-map construction
consults the encoding info, which is not implemented by the new backend
and causes the panic.
This fix simply avoids generating per-instruction entries in the address
map; it at least gets us going until we plumb SourceLocs all the way
through the new pipeline.
This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
* Consolidate trap/frame information
This commit removes `TrapRegistry` in favor of consolidating this
information in the `FRAME_INFO` we already have in the `wasmtime` crate.
This allows us to keep information generally in one place and have one
canonical location for "map this PC to some original wasm stuff". The
intent for this is to next update with enough information to go from a
program counter to a position in the original wasm file.
* Expose module offset information in `FrameInfo`
This commit implements functionality for `FrameInfo`, the wasm stack
trace of a `Trap`, to return the module/function offset. This allows
knowing the precise wasm location of each stack frame, instead of only
the main trap itself. The intention here is to provide more visibility
into the wasm source when something traps, so you know precisely where
calls were and where traps were, in order to assist in debugging.
Eventually we might use this information for mapping back to native
source languages as well (given sufficient debug information).
This change makes a previously-optional artifact of compilation always
computed on the cranelift side of things. This `ModuleAddressMap` is
then propagated to the same store of information other frame information
is stored within. This also removes the need for passing a `SourceLoc`
with wasm traps or to wasm trap creation, since the backtrace's wasm
frames will be able to infer their own `SourceLoc` from the relevant
program counters.
Preserve FPRs as required by the Windows fastcall calling convention.
This exposes an implementation limit due to Cranelift's approach to stack layout, which conflicts with expectations Windows makes in SEH layout - functions where the Cranelift user desires fastcall unwind information, that require preservation of an ABI-reserved FPR, that have a stack frame 240 bytes or larger, now produce an error when compiled. Several wasm spectests were disabled because they would trip this limit. This is a temporary constraint that should be fixed promptly.
Co-authored-by: bjorn3 <bjorn3@users.noreply.github.com>
This exposes the functionality of `fde::map_reg` on the `TargetIsa` trait, avoiding compilation errors on architectures where register mapping is not yet supported. The change is conditially compiled under the `unwind` feature.
* wasmtime: Pass around more contexts instead of fields
This commit refactors some wasmtime internals to pass around more
context-style structures rather than individual fields of each
structure. The intention here is to make the addition of fields to a
structure easier to plumb throughout the internals of wasmtime.
Currently you need to edit lots of functions to pass lots of parameters,
but ideally after this you'll only need to edit one or two struct fields
and then relevant locations have access to the information already.
Updates in this commit are:
* `debug_info` configuration is now folded into `Tunables`. Additionally
a `wasmtime::Config` now holds a `Tunables` directly and is passed
into an internal `Compiler`. Eventually this should allow for direct
configuration of the `Tunables` attributes from the `wasmtime` API,
but no new configuration is exposed at this time.
* `ModuleTranslation` is now passed around as a whole rather than
passing individual components to allow access to all the fields,
including `Tunables`.
This was motivated by investigating what it would take to optionally
allow loops and such to get interrupted, but that sort of codegen
setting was currently relatively difficult to plumb all the way through
and now it's hoped to be largely just an addition to `Tunables`.
* Fix lightbeam compile
* Wasmtime 0.15.0 and Cranelift 0.62.0. (#1398)
* Bump more ad-hoc versions.
* Add build.rs to wasi-common's Cargo.toml.
* Update the env var name in more places.
* Remove a redundant echo.
This patch adds initial support for ittapi which is an open
source profiling api for instrumentation and tracing and profiling
of jitted code. Result files can be read by VTune for analysis
Build:
cargo build --features=vtune
Profile: // Using amplxe-cl from VTune
amplxe-cl -v -collect hostpost target/debug/wasmtime --vtune test.wasm
Both cranelift-codegen and wasmtime-debug need to map Cranelift registers to Gimli registers. Previously both crates had an almost-identical `map_reg` implementation. This change:
- removes the wasmtime-debug implementation
- improves the cranelift-codegen implementation with custom errors
- exposes map_reg in `cranelift_codegen::isa::fde::map_reg` and subsequently `wasmtime_environ::isa::fde::map_reg`
* Bump Wasmtime to 0.14.0.
* Update the publish script for the wiggle crate wiggle.
* More fixes.
* Fix lightbeam depenency version.
* cargo update
* Cargo update wasi-tests too.
And add cargo update to the version-bump scripts.
* Store module name on `wasmtime_environ::Module`
This keeps all name information in one place so we dont' have to keep
extra structures around in `wasmtime::Module`.
* rustfmt
* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
* rename PassiveElemIndex to ElemIndex and same for PassiveDataIndex (#1411)
* rename PassiveDataIndex to DataIndex
* rename PassiveElemIndex to ElemIndex
* Apply renamings to wasmtime as well
* Run rustfmt
Co-authored-by: csmoe <csmoe@msn.com>
This adds support for the `table.copy` instruction from the bulk memory
proposal. It also supports multiple tables, which were introduced by the
reference types proposal.
Part of #928