* Enable jitdump profiling support by default
This the result of some of the investigation I was doing for #1017. I've
done a number of refactorings here which culminated in a number of
changes that all amount to what I think should result in jitdump support being
enabled by default:
* Pass in a list of finished functions instead of just a range to
ensure that we're emitting jit dump data for a specific module rather
than a whole `CodeMemory` which may have other modules.
* Define `ProfilingStrategy` in the `wasmtime` crate to have everything
locally-defined
* Add support to the C API to enable profiling
* Documentation added for profiling with jitdump to the book
* Split out supported/unsupported files in `jitdump.rs` to avoid having
lots of `#[cfg]`.
* Make dependencies optional that are only used for `jitdump`.
* Move initialization up-front to `JitDumpAgent::new()` instead of
deferring it to the first module.
* Pass around `Arc<dyn ProfilingAgent>` instead of
`Option<Arc<Mutex<Box<dyn ProfilingAgent>>>>`
The `jitdump` Cargo feature is now enabled by default which means that
our published binaries, C API artifacts, and crates will support
profiling at runtime by default. The support I don't think is fully
fleshed out and working but I think it's probably in a good enough spot
we can get users playing around with it!
Previously, we'd be very strict and disallow zero-length `wiggle_runtime::Region`s
altogether (we'd actually panic which is even worse). However, we
should allow this noting that any zero-length `Region` never
overlaps since its length is, well, zero. Additionally, this makes
`path_readlink` with zero buffers cleaner and possible without
additional checks/hacks around the passed in `GuestPtr<'_, [u8]>`
buffer.
* Remove `WrappedCallable` indirection
At this point `Func` has evolved quite a bit since inception and the
`WrappedCallable` trait I don't believe is needed any longer. This
should help clean up a few entry points by having fewer traits in play.
* Remove the `Callable` trait
This commit removes the `wasmtime::Callable` trait, changing the
signature of `Func::new` to take an appropriately typed `Fn`.
Additionally the function now always takes `&Caller` like `Func::wrap`
optionally can, to empower `Func::new` to have the same capabilities of
`Func::wrap`.
* Add a test for an already-fixed issue
Closes#849
* rustfmt
* Update more locations for `Callable`
* rustfmt
* Remove a stray leading borrow
* Review feedback
* Remove unneeded `wasmtime_call_trampoline` shim
* Add a first-class way of accessing caller's exports
This commit is a continuation of #1237 and updates the API of `Func` to
allow defining host functions which have easy access to a caller's
memory in particular. The new APIs look like so:
* The `Func::wrap*` family of functions was condensed into one
`Func::wrap` function.
* The ABI layer of conversions in `WasmTy` were removed
* An optional `Caller<'_>` argument can be at the front of all
host-defined functions now.
The old way the wasi bindings looked up memory has been removed and is
now replaced with the `Caller` type. The `Caller` type has a
`get_export` method on it which allows looking up a caller's export by
name, allowing you to get access to the caller's memory easily, and even
during instantiation.
* Add a temporary note
* Move some docs
- Convert recipes to have necessary size calculator
- Add a missing binemit function, `put_dynrexmp3`
- Modify the meta-encodings of x86 SIMD instructions to use `infer_rex()`, mostly through the `enc_both_inferred()` helper
- Fix up tests that previously always emitted a REX prefix
* Update wasi submodule
Removes some dependencies from the `witx` crate since WebAssembly/WASI#243
* Don't pull witx from two places
* Update submodule again
* Rename FdEntry to Entry
* Add custom FdSet container for managing fd allocs/deallocs
This commit adds a custom `FdSet` container which is intended
for use in `wasi-common` to track WASI fd allocs/deallocs. The
main aim for this container is to abstract away the current
approach of spawning new handles
```rust
fd = fd.checked_add(1).ok_or(...)?;
```
and to make it possible to reuse unused/reclaimed handles
which currently is not done.
The struct offers 3 methods to manage its functionality:
* `FdSet::new` initialises the internal data structures,
and most notably, it preallocates an `FdSet::BATCH_SIZE`
worth of handles in such a way that we always start popping
from the "smallest" handle (think of it as of reversed stack,
I guess; it's not a binary heap since we don't really care
whether internally the handles are sorted in some way, just that
the "largets" handle is at the bottom. Why will become clear
when describing `allocate` method.)
* `FdSet::allocate` pops the next available handle if one is available.
The tricky bit here is that, if we run out of handles, we preallocate
the next `FdSet::BATCH_SIZE` worth of handles starting from the
latest popped handle (i.e., the "largest" handle). This
works only because we make sure to only ever pop and push already
existing handles from the back, and push _new_ handles (from the
preallocation step) from the front. When we ultimately run out
of _all_ available handles, we then return `None` for the client
to handle in some way (e.g., throwing an error such as `WasiError::EMFILE`
or whatnot).
* `FdSet::deallocate` returns the already allocated handle back to
the pool for further reuse.
When figuring out the internals, I've tried to optimise for both
alloc and dealloc performance, and I believe we've got an amortised
`O(1)~*` performance for both (if my maths is right, and it may very
well not be, so please verify!).
In order to keep `FdSet` fairly generic, I've made sure not to hard-code
it for the current type system generated by `wig` (i.e., `wasi::__wasi_fd_t`
representing WASI handle), but rather, any type which wants to be managed
by `FdSet` needs to conform to `Fd` trait. This trait is quite simple as
it only requires a couple of rudimentary traits (although `std:#️⃣:Hash`
is quite a powerful assumption here!), and a custom method
```rust
Fd::next(&self) -> Option<Self>;
```
which is there to encapsulate creating another handle from the given one.
In the current state of the code, that'd be simply `u32::checked_add(1)`.
When `wiggle` makes it way into the `wasi-common`, I'd imagine it being
similar to
```rust
fn next(&self) -> Option<Self> {
self.0.checked_add(1).map(Self::from)
}
```
Anyhow, I'd be happy to learn your thoughts about this design!
* Fix compilation on other targets
* Rename FdSet to FdPool
* Fix FdPool unit tests
* Skip preallocation step in FdPool
* Replace 'replace' calls with direct assignment
* Reuse FdPool from snapshot1 in snapshot0
* Refactor FdPool::allocate
* Remove entry before deallocating the fd
* Refactor the design to accommodate `u32` as underlying type
This commit refactors the design by ensuring that the underlying
type in `FdPool` which we use to track and represent raw file
descriptors is `u32`. As a result, the structure of `FdPool` is
simplified massively as we no longer need to track the claimed
descriptors; in a way, we trust the caller to return the handle
after it's done with it. In case the caller decides to be clever
and return a handle which was not yet legally allocated, we panic.
This should never be a problem in `wasi-common` unless we hit a
bug.
To make all of this work, `Fd` trait is modified to require two
methods: `as_raw(&self) -> u32` and `from_raw(raw_fd: u32) -> Self`
both of which are used to convert to and from the `FdPool`'s underlying
type `u32`.
* Handle select relocations while generating trampolines
Trampoline generation for all function signatures exposed a preexisting
bug in wasmtime where trampoline generation occasionally does have
relocations, but it's asserted that trampolines don't generate
relocations, causing a panic. The relocation is currently primarily the
probestack function which happens when functions might have a huge
number of parameters, but not so huge as to blow the wasmparser limit of
how many parameters are allowed.
This commit fixes the issue by handling relocations for trampolines in
the same manner as the rest of the code. Note that dynamically-generated
trampolines via the `Func` API still panic if they have too many
arguments and generate a relocation, but it seems like we can try to fix
that later if the need truly arises.
Closes#1322
* Log trampoline relocations
Removes an edge towards the `synstructure` dependency in our dependency
graph which, if removed entirely, is hoped to reduce build times locally
and on CI as you switch between `cargo build` and `cargo test` because
deep dependencies like `syn` won't have their features alternating back
and forth.
* Build wasmtime-c-api differenty in run-examples
This tweaks how the wasmtime-c-api crate is built slightly, changing how
we invoke Cargo. Due to historical Cargo bugs this should help minimize
the number of rebuilds due to features since the feature selection will
be different.
* rustfmt
Until #1306 is resolved (some spilling/regalloc issue with larger FPR register banks), this removes FPR32 support. Only Wasm's `i64x2.mul` was using this register class and that instruction is predicated on AVX512 support; for the time being, that instruction will have to make do with the 16 FPR registers.
The operands of these bitwise instructions could have different types and still be valid Wasm (i.e. `v128`). Because of this, we must tell Cranelift to cast both operands to the same type--the default type, in this case. This undoes the work merged in https://github.com/bytecodealliance/cranelift/pull/1233.
Because the smallest Wasm scalar type is i32, users of the `i8x16.replace_lane` and `i16x8.replace_lane` instructions will only be able to pass `i32` values as operands. These values must be reduced by dropping the upper bits (see https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#replace-lane-value) using Cranelift's `ireduce` instruction.
Because Wasm SIMD vectors store their type as `v128`, there is a mismatch between the more specific types Cranelift uses and Wasm SIMD. Because of this mismatch, Wasm SIMD translates to the default Cranelift type `I8X16`, causing issues when more specific type information is available (e.g. `I32x4`). To fix this, all incoming values to SIMD instructions are checked during translation (not runtime) and if necessary cast from `I8X16` to the appropriate type by functions like `optionally_bitcast_vector`, `pop1_with_bitcast` and `pop2_with_bitcast`. However, there are times when we must also cast to `I8X16` for outgoing values, as with `local.set` and `local.tee`.
There are other ways of resolving this (e.g., see adding a new vector type, https://github.com/bytecodealliance/cranelift/pull/1251) but we discussed staying with this casting approach in https://github.com/bytecodealliance/wasmtime/issues/1147.
... but turn it back on in CI by default. The `binaryen-sys` crate
builds binaryen from source, which is a drag on CI for a few reasons:
* This is quite large and takes a good deal of time to build
* The debug build directory for binaryen is 4GB large
In an effort to both save time and disk space on the builders this
commit adds a `binaryen` feature to the `wasmtime-fuzz` crate. This
feature is enabled specifically when running the fuzzers on CI, but it
is disabled during the typical `cargo test --all` command. This means
that the test builders should save an extra 4G of space and be a bit
speedier now that they don't build a giant wad of C++.
We'll need to update the OSS-fuzz integration to enable the `binaryen`
feature when executing `cargo fuzz build`, and I'll do that once this
gets closer to landing.