This adds support for `.wat` tests in `cranelift-filetest`. The test runner
translates the WAT to Wasm and then uses `cranelift-wasm` to translate the Wasm
to CLIF.
These tests are always precise output tests. The test expectations can be
updated by running tests with the `CRANELIFT_TEST_BLESS=1` environment variable
set, similar to our compile precise output tests. The test's expected output is
contained in the last comment in the test file.
The tests allow for configuring the kinds of heaps used to implement Wasm linear
memory via TOML in a `;;!` comment at the start of the test.
To get ISA and Cranelift flags parsing available in the filetests crate, I had
to move the `parse_sets_and_triple` helper from the `cranelift-tools` binary
crate to the `cranelift-reader` crate, where I think it logically
fits.
Additionally, I had to make some more bits of `cranelift-wasm`'s dummy
environment `pub` so that I could properly wrap and compose it with the
environment used for the `.wat` tests. I don't think this is a big deal, but if
we eventually want to clean this stuff up, we can probably remove the dummy
environments completely, remove `translate_module`, and fold them into these new
test environments and test runner (since Wasmtime isn't using those things
anyways).
When parsing isa specific values we were accidentally discarding the
value of the flag, and treating it always as a boolean flag.
This would cause a `clif-util` invocation such as
`cargo run -- compile -D --set has_sse41=false --target x86_64 test.clif`
to be interpreted as `--set has_sse41` and enable that feature instead
of disabling it.
Addresses #3809: when we are asked to create a Cranelift backend with
shared flags that indicate support for SIMD, we should check that the
ISA level needed for our SIMD lowerings is present.
This commit moves the cranelift tests and tools from the `wabt` crate on
crates.io (which compiles the wabt C++ codebase) to the `wat` crate on
crates.io which is a Rust parser for the `*.wat` format. This was
motivated by me noticing that release builds on Windows are ~5 minutes
longer than Linux builds, and local timing graphs showed that `wabt-sys`
was by far the longest build step in the build process.
This commit changes the `clif-util` binary where the `--enable-simd`
flag is no longer respected with the text format as input, since the
`wat` crate has no feature gating. This was already sort of not
respected, though, since `--enable-simd` wasn't consulted for binary
inputs which `clif-util` supports as well. If this isn't ok though then
it should be ok to close this PR!
Since Location is basically just a usize, and wasmparser::Type is an
enum, and both are copiable, this passes them down by value instead of
by reference, as suggested by Clippy.
This switches from a custom list of architectures to use the
target-lexicon crate.
- "set is_64bit=1; isa x86" is replaced with "target x86_64", and
similar for other architectures, and the `is_64bit` flag is removed
entirely.
- The `is_compressed` flag is removed too; it's no longer being used to
control REX prefixes on x86-64, ARM and Thumb are separate
architectures in target-lexicon, and we can figure out how to
select RISC-V compressed encodings when we're ready.
* cton-util: fix some clippy unnecessary pass-by-value warnings
* clippy: ignore too many arguments / cyclomatic complexity in module
since these functions are taking args coming from the command line, i
dont think this is actually a valid lint, morally the arguments are all
from one structure
* cton-util: take care of remaining clippy warnings
* cton-reader: fix all non-suspicious clippy warnings
* cton-reader: disable clippy at site of suspicious lint
* cton-frontend: disable clippy at the site of an invalid lint
* cton-frontend: fix clippy warnings, or ignore benign ones
* clippy: ignore the camelcase word WebAssembly in docs
* cton-wasm: fix clippy complaints or ignore benign ones
* cton-wasm tests: fix clippy complaints
* cretonne: starting point turns off all clippy warnings
* cretonne: clippy fixes, or lower allow() to source of problem
* cretonne: more clippy fixes
* cretonne: fix or disable needless_lifetimes lint
this linter is buggy when the declared lifetime is used for another type
constraint.
* cretonne: fix clippy complaint about Pass::NoPass
* rustfmt
* fix prev minor api changes clippy suggested
* add clippy to test-all
* cton-filetests: clippy fixes
* simplify clippy reporting in test-all
* cretonne: document clippy allows better
* cretonne: fix some more clippy lints
* cretonne: fix clippy lints (mostly doc comments)
* cretonne: allow all needless_lifetimes clippy warnings
remove overrides at the false positives
* rustfmt
This allows us to run the tests via a library call rather than just
as a command execution. And, it's a step toward a broader goal, which
is to keep the code in the top-level src directory minimal, with
important functionality exposed as crates.
The liveness verifier will check that the live ranges are consistent
with the function. It runs as part of the register allocation pipeline
when enable_verifier is set.
The initial implementation checks the live ranges, but not the
ISA-specific constraints and affinities.
The test drivers can stop calling comp_ctx.verify because legalize() and
regalloc() do it themselves now.
This also makes it possible for those two passes to return other
CtonError codes in the future, not just verifier errors.
Run the verify_contexti() function after invoking the legalize() and
regalloc() context functions. This will help catch bad code produced by
these passes.