* Resolve libcall relocations for older CPUs
Long ago Wasmtime used to have logic for resolving relocations
post-compilation for libcalls which I ended up removing during
refactorings last year. As #5563 points out, however, it's possible to
get Wasmtime to panic by disabling SSE features which forces Cranelift
to use libcalls for some floating-point operations instead. Note that
this also requires disabling SIMD because SIMD support has a baseline of
SSE 4.2.
This commit pulls back the old implementations of various libcalls and
reimplements logic necessary to have them work on CPUs without SSE 4.2
Closes#5563
* Fix log message in `wast` support
* Fix offset listed in relocations
Be sure to factor in the offset of the function itself
* Review comments
* feat: implement memory.atomic.notify,wait32,wait64
Added the parking_spot crate, which provides the needed registry for the
operations.
Signed-off-by: Harald Hoyer <harald@profian.com>
* fix: change trap message for HeapMisaligned
The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add test for atomic wait on non-shared memory
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests/spec_testsuite/proposals/threads
without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add atomics_notify.wast
checking that notify with 0 waiters returns 0 on shared and non-shared
memory.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests for atomic wait on shared memory
- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Update spec test repo
Our submodule was accidentally reverted to an older commit as part
of #4271 and while it could be updated to as it was before I went ahead
and updated it to `main`.
* Update ignore directives and test multi-memory
* Update riscv ignores
* Upgrade wasm-tools crates, namely the component model
This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:
* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
more efficiently reading binary operators from a wasm binary. The old
`Operator`-based reading was left in place, however, and continues to
be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
this new API, but for now the biggest change is...
* bytecodealliance/wasm-tools#703 - this commit was a major update to
the component model AST. This commit almost entirely deals with the
fallout of this change.
The changes made to the component model were:
1. The `unit` type no longer exists. This was generally a simple change
where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
relatively lightweight and mostly just a renaming on the surface. I
took this opportunity to rename `val::Result` to `val::ResultVal` and
`types::Result` to `types::ResultType` to avoid clashing with the
standard library types. The `Option`-based types were handled with
this as well.
3. The payload type of `variant` and `result` types are now optional.
This affected many locations that calculate flat type
representations, ABI information, etc. The `#[derive(ComponentType)]`
macro now specifically handles Rust-defined `enum` types which have
no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
signature of invoking component functions because the return value is
now bound by `ComponentNamedList` (renamed from `ComponentParams`).
This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
all parameters/results. This mostly affected the text format used
throughout the tests.
I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.
* Update version numbers
* Use crates.io
* Add a dataflow-based representation of components
This commit updates the inlining phase of compiling a component to
creating a dataflow-based representation of a component instead of
creating a final `Component` with a linear list of initializers. This
dataflow graph is then linearized in a final step to create the actual
final `Component`.
The motivation for this commit stems primarily from my work implementing
strings in fused adapters. In doing this my plan is to defer most
low-level transcoding to the host itself rather than implementing that
in the core wasm adapter modules. This means that small
cranelift-generated trampolines will be used for adapter modules to call
which then call "transcoding libcalls". The cranelift-generated
trampolines will get raw pointers into linear memory and pass those to
the libcall which core wasm doesn't have access to when passing
arguments to an import.
Implementing this with the previous representation of a `Component` was
becoming too tricky to bear. The initialization of a transcoder needed
to happen at just the right time: before the adapter module which needed
it was instantiated but after the linear memories referenced had been
extracted into the `VMComponentContext`. The difficulty here is further
compounded by the current adapter module injection pass already being
quite complicated. Adapter modules are already renumbering the index
space of runtime instances and shuffling items around in the
`GlobalInitializer` list. Perhaps the worst part of this was that
memories could already be referenced by host function imports or exports
to the host, and if adapters referenced the same memory it shouldn't be
referenced twice in the component. This meant that `ExtractMemory`
initializers ideally needed to be shuffled around in the initializer
list to happen as early as possible instead of wherever they happened to
show up during translation.
Overall I did my best to implement the transcoders but everything always
came up short. I have decided to throw my hands up in the air and try a
completely different approach to this, namely the dataflow-based
representation in this commit. This makes it much easier to edit the
component after initial translation for injection of adapters, injection
of transcoders, adding dependencies on possibly-already-existing items,
etc. The adapter module partitioning pass in this commit was greatly
simplified to something which I believe is functionally equivalent but
is probably an order of magnitude easier to understand.
The biggest downside of this representation I believe is having a
duplicate representation of a component. The `component::info` was
largely duplicated into the `component::dfg` module in this commit.
Personally though I think this is a more appropriate tradeoff than
before because it's very easy to reason about "convert representation A
to B" code whereas it was very difficult to reason about shuffling
around `GlobalInitializer` items in optimal fashions. This may also have
a cost at compile-time in terms of shuffling data around, but my hope is
that we have lots of other low-hanging fruit to optimize if it ever
comes to that which allows keeping this easier-to-understand
representation.
Finally, to reiterate, the final representation of components is not
changed by this PR. To the runtime internals everything is still the
same.
* Fix compile of factc
This commit builds on bytecodealliance/wasm-tools#690 to add support to
testing of the component model to execute functions when running
`*.wast` files. This support is all built on #4442 as functions are
invoked through a "dynamic" API. Right now the testing and integration
is fairly crude but I'm hoping that we can try to improve it over time
as necessary. For now this should provide a hopefully more convenient
syntax for unit tests and the like.
This commit adds support to Wasmtime for components which themselves
export instances. The support here adds new APIs for how instance
exports are accessed in the embedding API. For now this is mostly just a
first-pass where the API is somewhat confusing and has a lot of
lifetimes. I'm hoping that over time we can figure out how to simplify
this but for now it should at least be expressive enough for exploring
the exports of an instance.
* Add support for nested components
This commit is an implementation of a number of features of the
component model including:
* Defining nested components
* Outer aliases to components and modules
* Instantiating nested components
The implementation here is intended to be a foundational pillar of
Wasmtime's component model support since recursion and nested components
are the bread-and-butter of the component model. At a high level the
intention for the component model implementation in Wasmtime has long
been that the recursive nature of components is "erased" at compile time
to something that's more optimized and efficient to process. This commit
ended up exemplifying this quite well where the vast majority of the
internal changes here are in the "compilation" phase of a component
rather than the runtime instantiation phase. The support in the
`wasmtime` crate, the runtime instantiation support, only had minor
updates here while the internals of translation have seen heavy updates.
The `translate` module was greatly refactored here in this commit.
Previously it would, as a component is parsed, create a final
`Component` to hand off to trampoline compilation and get persisted at
runtime. Instead now it's a thin layer over `wasmparser` which simply
records a list of `LocalInitializer` entries for how to instantiate the
component and its index spaces are built. This internal representation
of the instantiation of a component is pretty close to the binary format
intentionally.
Instead of performing dataflow legwork the `translate` phase of a
component is now responsible for two primary tasks:
1. All components and modules are discovered within a component. They're
assigned `Static{Component,Module}Index` depending on where they're
found and a `{Module,}Translation` is prepared for each one. This
"flattens" the recursive structure of the binary into an indexed list
processable later.
2. The lexical scope of components is managed here to implement outer
module and component aliases. This is a significant design
implementation because when closing over an outer component or module
that item may actually be imported or something like the result of a
previous instantiation. This means that the capture of
modules and components is both a lexical concern as well as a runtime
concern. The handling of the "runtime" bits are handled in the next
phase of compilation.
The next and currently final phase of compilation is a new pass where
much of the historical code in `translate.rs` has been moved to (but
heavily refactored). The goal of compilation is to produce one "flat"
list of initializers for a component (as happens prior to this PR) and
to achieve this an "inliner" phase runs which runs through the
instantiation process at compile time to produce a list of initializers.
This `inline` module is the main addition as part of this PR and is now
the workhorse for dataflow analysis and tracking what's actually
referring to what.
During the `inline` phase the local initializers recorded in the
`translate` phase are processed, in sequence, to instantiate a
component. Definitions of items are tracked to correspond to their root
definition which allows seeing across instantiation argument boundaries
and such. Handling "upvars" for component outer aliases is handled in
the `inline` phase as well by creating state for a component whenever a
component is defined as was recorded during the `translate` phase.
Finally this phase is chiefly responsible for doing all string-based
name resolution at compile time that it can. This means that at runtime
no string maps will need to be consulted for item exports and such.
The final result of inlining is a list of "global initializers" which is
a flat list processed during instantiation time. These are almost
identical to the initializers that were processed prior to this PR.
There are certainly still more gaps of the component model to implement
but this should be a major leg up in terms of functionality that
Wasmtime implements. This commit, however leaves behind a "hole" which
is not intended to be filled in at this time, namely importing and
exporting components at the "root" level from and to the host. This is
tracked and explained in more detail as part of #4283.
cc #4185 as this completes a number of items there
* Tweak code to work on stable without warning
* Review comments
* Implement module imports into components
As a step towards implementing function imports into a component this
commit implements importing modules into a component. This fills out
missing pieces of functionality such as exporting modules as well. The
previous translation code had initial support for translating imported
modules but some of the AST type information was restructured with
feedback from this implementation, namely splitting the
`InstantiateModule` initializer into separate upvar/import variants to
clarify that the item orderings for imports are resolved differently at
runtime.
Much of this commit is also adding infrastructure for any imports at all
into a component. For example a `Linker` type (analagous to
`wasmtime::Linker`) was added here as well. For now this type is quite
limited due to the inability to define host functions (it can only work
with instances and instances-of-modules) but it's enough to start
writing `*.wast` tests which exercise lots of module-related functionality.
* Fix a warning
* Initial skeleton of some component model processing
This commit is the first of what will likely be many to implement the
component model proposal in Wasmtime. This will be structured as a
series of incremental commits, most of which haven't been written yet.
My hope is to make this incremental and over time to make this easier to
review and easier to test each step in isolation.
Here much of the skeleton of how components are going to work in
Wasmtime is sketched out. This is not a complete implementation of the
component model so it's not all that useful yet, but some things you can
do are:
* Process the type section into a representation amenable for working
with in Wasmtime.
* Process the module section and register core wasm modules.
* Process the instance section for core wasm modules.
* Process core wasm module imports.
* Process core wasm instance aliasing.
* Ability to compile a component with core wasm embedded.
* Ability to instantiate a component with no imports.
* Ability to get functions from this component.
This is already starting to diverge from the previous module linking
representation where a `Component` will try to avoid unnecessary
metadata about the component and instead internally only have the bare
minimum necessary to instantiate the module. My hope is we can avoid
constructing most of the index spaces during instantiation only for it
to all ge thrown away. Additionally I'm predicting that we'll need to
see through processing where possible to know how to generate adapters
and where they are fused.
At this time you can't actually call a component's functions, and that's
the next PR that I would like to make.
* Add tests for the component model support
This commit uses the recently updated wasm-tools crates to add tests for
the component model added in the previous commit. This involved updating
the `wasmtime-wast` crate for component-model changes. Currently the
component support there is quite primitive, but enough to at least
instantiate components and verify the internals of Wasmtime are all
working correctly. Additionally some simple tests for the embedding API
have also been added.
* Update the wasm-tools family of crates
This commit updates these crates as used by Wasmtime for the recently
published versions to pull in changes necessary to support the component
model. I've split this out from #4005 to make it clear what's impacted
here and #4005 can simply rebase on top of this to pick up the necessary
changes.
* More test fixes
* Remove the module linking implementation in Wasmtime
This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.
The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.
Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.
This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.
Closes#3941
* Fix doc link
* Update comments
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.
A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.
[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
* Optimize `Func::call` and its C API
This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:
* Looking up the type of a function, to typecheck the arguments with and
use to guide how the results should be loaded, no longer hits the
rwlock in the `Engine` but instead each `Func` contains its own
`FuncType`. This can be an unnecessary allocation for funcs not used
with `Func::call`, so this is a downside of this implementation
relative to #3298. A mitigating factor, though, is that instance
exports are loaded lazily into the `Store` and in theory not too many
funcs are active in the store as `Func` objects.
* Temporary storage is amortized with a long-lived `Vec` in the `Store`
rather than allocating a new vector on each call. This is basically
the same strategy as #3294 only applied to different types in
different places. Specifically `wasmtime::Store` now retains a
`Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
calling `Func::call`.
* Finally, an API breaking change is made to `Func::call` and its type
signature (as well as `Func::call_async`). Instead of returning
`Box<[Val]>` as it did before this function now takes a
`results: &mut [Val]` parameter. This allows the caller to manage the
allocation and we can amortize-remove it in `wasmtime_func_call` by
using space after the parameters in the `Vec<Val>` we're passing in.
This change is naturally a breaking change and we'll want to consider
it carefully, but mitigating factors are that most embeddings are
likely using `TypedFunc::call` instead and this signature taking a
mutable slice better aligns with `Func::new` which receives a mutable
slice for the results.
Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.
* Rebase issues
This commit updates the output of failed expectations in the `wast`
crate to fold in the check-is-the-value-the-same with the
generate-a-nice-message. Additionally this tries to make sure that
everything is aligned in the output to make it a bit more easily
readable. Vectors should notably be improved where lane differences can
be compared vertically in the case of integers and printed out
specifically in the case of floats.
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* wasmtime_runtime: move ResourceLimiter defaults into this crate
In preparation of changing wasmtime::ResourceLimiter to be a re-export
of this definition, because translating between two traits was causing
problems elsewhere.
* wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter
* refactor Store internals to support ResourceLimiter as part of store's data
* add hooks for entering and exiting native code to Store
* wasmtime-wast, fuzz: changes to adapt ResourceLimiter API
* fix tests
* wrap calls into wasm with entering/exiting exit hooks as well
* the most trivial test found a bug, lets write some more
* store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost
Co-authored-By: Alex Crichton <alex@alexcrichton.com>
* improve tests for the entering/exiting native hooks
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:
* Type contents are now stored separately from a `wasmtime_env::Module`.
Given that modules can freely alias types and have them used all over
the place, it seemed best to have one canonical location to type
storage which everywhere else points to (with indices). A new
`TypeTables` structure is produced during compilation which is shared
amongst all member modules in a wasm blob.
* Instantiation is heavily refactored to account for module linking. The
main gotcha here is that imports are now listed as "initializers". We
have a sort of pseudo-bytecode-interpreter which interprets the
initialization of a module. This is more complicated than just
matching imports at this point because in the module linking proposal
the module, alias, import, and instance sections may all be
interleaved. This means that imports aren't guaranteed to show up at
the beginning of the address space for modules/instances.
Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.
Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.
It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.
cc #2094
With the module linking proposal the field name on imports is now
optional, and only the module is required to be specified. This commit
propagates this API change to the boundary of wasmtime's API, ensuring
consumers are aware of what's optional with module linking and what
isn't. Note that it's expected that all existing users will either
update accordingly or unwrap the result since module linking is
presumably disabled.
This commit is intended to update wasmparser to 0.59.0. This primarily
includes bytecodealliance/wasm-tools#40 which is a large update to how
parsing and validation works. The impact on Wasmtime is pretty small at
this time, but over time I'd like to refactor the internals here to lean
more heavily on that upstream wasmparser refactoring.
For now, though, the intention is to get on the train of wasmparser's
latest `main` branch to ensure we get bug fixes and such.
As part of this update a few other crates and such were updated. This is
primarily to handle the new encoding of `ref.is_null` where the type is
not part of the instruction encoding any more.
Better to be loud that we don't support attaching arbitrary host info to
`externref`s than to limp along and pretend we do support it. Supporting it
properly won't reuse any of this code anyways.
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.
This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.
Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.
Part of #929
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
* CompiledModule holds CodeMemory and GdbJitImageRegistration
* Store keeps track of its JIT code
* Makes "jit_int.rs" stuff Send+Sync
* Adds the threads example.
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
* Remove Cranelift's OutOfBounds trap, which is no longer used.
* Change proc_exit to unwind instead of exit the host process.
This implements the semantics in https://github.com/WebAssembly/WASI/pull/235.
Fixes#783.
Fixes#993.
* Fix exit-status tests on Windows.
* Revert the wiggle changes and re-introduce the wasi-common implementations.
* Move `wasi_proc_exit` into the wasmtime-wasi crate.
* Revert the spec_testsuite change.
* Remove the old proc_exit implementations.
* Make `TrapReason` an implementation detail.
* Allow exit status 2 on Windows too.
* Fix a documentation link.
* Really fix a documentation link.
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
* Add APIs to lookup values in `Linker`
This commit adds three new methods to `Linker` in order to inspect it
after values have been inserted:
* `Linker::iter` - iterates over all defined values
* `Linker::get` - lookup a value by its `ImportType`
* `Linker::get_by_name` - lookup values based on their name
Closes#1454
* More apis!
* Add Wasmtime-specific C API functions to return errors
This commit adds new `wasmtime_*` symbols to the C API, many of which
mirror the existing counterparts in the `wasm.h` header. These APIs are
enhanced in a number of respects:
* Detailed error information is now available through a
`wasmtime_error_t`. Currently this only exposes one function which is
to extract a string version of the error.
* There is a distinction now between traps and errors during
instantiation and function calling. Traps only happen if wasm traps,
and errors can happen for things like runtime type errors when
interacting with the API.
* APIs have improved safety with respect to embedders where the lengths
of arrays are now taken as explicit parameters rather than assumed
from other parameters.
* Handle trap updates
* Update C examples
* Fix memory.c compile on MSVC
* Update test assertions
* Refactor C slightly
* Bare-bones .NET update
* Remove bogus nul handling
* Use `Linker` in `*.wast` testing
By default `Linker` disallows shadowing previously defined items, but it
looks like the `*.wast` test suites rely on this so this commit adds a
boolean flag to `Linker` as well indicating whether duplicates are
allowed.
* Review comments
* Add a test with a number of recursive instances
* Deny warnings in doctests
* No tabs
* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
* Update cranelift to 0.58.0
* Update `wasmprinter` dep to require 0.2.1
We already had it in the lock file, but this ensures we won't ever go back down.
* Ensure that our error messages match `assert_invalid`'s
The bulk of this work was done in
https://github.com/bytecodealliance/wasmparser/pull/186 but now we can test it
at the `wasmtime` level as well.
Fixes#492
* Stop feeling guilty about not matching `assert_malformed` messages
Remove the "TODO" and stop printing warning messages. These would just be busy
work to implement, and getting all the messages the exact same relies on using
the same structure as the spec interpreter's parser, which means that where you
have a helper function and they don't, then things go wrong, and vice versa. Not
worth it.
Fixes#492
* Enable (but ignore) the reference-types proposal tests
* Match test suite directly, instead of roundabout starts/endswith
* Enable (but ignore) bulk memory operations proposal test suite
* Document the `wasmtime::Instance` APIs
This documents oddities like the import list and export list and how to
match them all up. Addtionally this largely just expands all the docs
related to `Instance` to get filled out.
This also moves the `set_signal_handler` functions into
platform-specific modules in order to follow Rust idioms about how to
expose platform-specific information. Additionally the methods are
marked `unsafe` because I figure anything having to do with signal
handling is `unsafe` inherently. I don't actually know what these
functions do, so they're currently still undocumented.
* Fix build of python bindings
* Fix some rebase conflicts
* Don't require `Store` in `Instance` constructor
This can be inferred from the `Module` argument. Additionally add a
`store` accessor to an `Instance` in case it's needed to instantiate
another `Module`.
cc #708
* Update more constructors
* Fix a doctest
* Don't ignore store in `wasm_instance_new`
* Run rustfmt
* Update to the latest spec_testsuite and dependencies.
Update to target-lexicon 0.10, cranelift 0.54, wast 0.6, faerie 0.14,
and the latest spec_testsuite.
For wast and cranelift-wasm, update the code for API changes.
* Factor out the code for matching f32, f64, and v128.
This takes the idea from #802 to split out `f32_matches`, `f64_matches`,
and `v128_matches` functions, which better factor out the matching
functionality between scalar and vector.
This commit refactors the `wasmtime-wast` crate to internally make it a
bit more concise with less repetition. Additionally it also improves the
error messages by guaranteeing that all failed tests have context
indicating where the test was defined.
It turns out there was also a bug in the previous implementation where
an `AssertMalformed` directive with a `quote` module would accidentally
skip all further tests. This has now been fixed, and all futher tests
continued to pass except for the `simd_const.wast` test. This test has
been disabled temporarily but once the `wasmparser` and `wast` crates
are updated (being worked on independently) this should be possible to
re-enable.
* Remove `HostRef` from the `wasmtime` public API
This commit removes all remaining usages of `HostRef` in the public API
of the `wasmtime` crate. This involved a number of API decisions such
as:
* None of `Func`, `Global`, `Table`, or `Memory` are wrapped in `HostRef`
* All of `Func`, `Global`, `Table`, and `Memory` implement `Clone` now.
* Methods called `type` are renamed to `ty` to avoid typing `r#type`.
* Methods requiring mutability for external items now no longer require
mutability. The mutable reference here is sort of a lie anyway since
the internals are aliased by the underlying module anyway. This
affects:
* `Table::set`
* `Table::grow`
* `Memory::grow`
* `Instance::set_signal_handler`
* The `Val::FuncRef` type is now no longer automatically coerced to
`AnyRef`. This is technically a breaking change which is pretty bad,
but I'm hoping that we can live with this interim state while we sort
out the `AnyRef` story in general.
* The implementation of the C API was refactored and updated in a few
locations to account for these changes:
* Accessing the exports of an instance are now cached to ensure we
always hand out the same `HostRef` values.
* `wasm_*_t` for external values no longer have internal cache,
instead they all wrap `wasm_external_t` and have an unchecked
accessor for the underlying variant (since the type is proof that
it's there). This makes casting back and forth much more trivial.
This is all related to #708 and while there's still more work to be done
in terms of documentation, this is the major bulk of the rest of the
implementation work on #708 I believe.
* More API updates
* Run rustfmt
* Fix a doc test
* More test updates