Commit Graph

48 Commits

Author SHA1 Message Date
Nick Fitzgerald
f18a1f1488 Cranelift: Deduplicate ABI signatures during lowering (#4829)
* Cranelift: Deduplicate ABI signatures during lowering

This commit creates the `SigSet` type which interns and deduplicates the ABI
signatures that we create from `ir::Signature`s. The ABI signatures are now
referred to indirectly via a `Sig` (which is a `cranelift_entity` ID), and we
pass around a `SigSet` to anything that needs to access the actual underlying
`SigData` (which is what `ABISig` used to be).

I had to change a couple methods to return a `SmallInstVec` instead of emitting
directly to work around what would otherwise be shared and exclusive borrows of
the lowering context overlapping. I don't expect any of these to heap allocate
in practice.

This does not remove the often-unnecessary allocations caused by
`ensure_struct_return_ptr_is_returned`. That is left for follow up work.

This also opens the door for further shuffling of signature data into more
efficient representations in the future, now that we have `SigSet` to store it
all in one place and it is threaded through all the code. We could potentially
move each signature's parameter and return vectors into one big vector shared
between all signatures, for example, which could cut down on allocations and
shrink the size of `SigData` since those `SmallVec`s have pretty large inline
capacity.

Overall, this refactoring gives a 1-7% speedup for compilation on
`pulldown-cmark`:

```
compilation :: cycles :: benchmarks/pulldown-cmark/benchmark.wasm

  Δ = 8754213.66 ± 7526266.23 (confidence = 99%)

  dedupe.so is 1.01x to 1.07x faster than main.so!

  [191003295 234620642.20 280597986] dedupe.so
  [197626699 243374855.86 321816763] main.so

compilation :: cycles :: benchmarks/bz2/benchmark.wasm

  No difference in performance.

  [170406200 194299792.68 253001201] dedupe.so
  [172071888 193230743.11 223608329] main.so

compilation :: cycles :: benchmarks/spidermonkey/benchmark.wasm

  No difference in performance.

  [3870997347 4437735062.59 5216007266] dedupe.so
  [4019924063 4424595349.24 4965088931] main.so
```

* Use full path instead of import to avoid warnings in some build configurations

Warnings will then cause CI to fail.

* Move `SigSet` into `VCode`
2022-08-31 20:39:32 +00:00
Chris Fallin
186c7c3b89 x64: clean up regalloc-related semantics on several instructions. (#4811)
* x64: clean up regalloc-related semantics on several instructions.

This PR removes all uses of "modify" operands on instructions in the x64
backend, and also removes all uses of "pinned vregs", or vregs that are
explicitly tied to particular physical registers. In place of both of
these mechanisms, which are legacies of the old regalloc design and
supported via compatibility code, the backend now uses operand
constraints. This is more flexible as it allows the regalloc to see the
liveranges and constraints without "reverse-engineering" move instructions.

Eventually, after removing all such uses (including in other backends
and by the ABI code), we can remove the compatibility code in regalloc2,
significantly simplifying its liverange-construction frontend and
thus allowing for higher confidence in correctness as well as possibly a
bit more compilation speed.

Curiously, there are a few extra move instructions now; they are likely
poor splitting decisions and I can try to chase these down later.

* Fix cranelift-codegen tests.

* Review feedback.
2022-08-30 17:21:14 -07:00
Nick Fitzgerald
f0c60f46a8 Cranelift: Remove ABICallee trait (#4701)
* Cranelift: Remove `ABICallee` trait

It has only one implementation: the `ABICalleeImpl` struct. By using that
directly we can avoid unnecessary layers of generics and abstractions as well as
a couple `Box`es that were previously putting the single implementation into a
`Box<dyn>`.

* Cranelift: Rename `ABICalleeImpl` to `AbiCallee`

* Fix comments as per review

* Rename `AbiCallee` to `Callee`
2022-08-15 18:27:05 +00:00
Benjamin Bouvier
8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00
Chris Fallin
de8d44d0e5 Cranelift: MachBuffer: apply branch peephole opts one last time at buffer tail. (#4652)
The `MachBuffer` applies a set of peephole-optimization rules to do
branch threading, leverage fallthrough paths, eliminate empty blocks,
and flip conditional branches where needed to make branches more
efficient starting from naive always-branch-at-end-of-BB code.

This works by applying the rules at every label-bind, which is
equivalent to applying them at the end of every basic block, where
branches are usually inserted.

However, this misses one case: the end of the buffer! Currently we
don't optimize any redundant or foldable branches at the very end of
the machine code.

This usually doesn't matter when the function ends in an epilogue with
`ret` as the last instruction. However, when cold blocks exist, it can
actually matter.

Thanks to @mchesser for pointing out this issue in #4636.
2022-08-09 10:38:48 -07:00
Michael Chesser
8aee85ebaa Propagate cold annotations to edge blocks (#4636)
Update the lowering stage to mark edge blocks as cold if either the
predecessor or successor block is cold.
2022-08-09 05:05:57 +00:00
Anton Kirilov
a897742593 Initial back-edge CFI implementation (#3606)
Give the user the option to sign and to authenticate function
return addresses with the operations introduced by the Pointer
Authentication extension to the Arm instruction set architecture.

Copyright (c) 2021, Arm Limited.
2022-08-03 11:08:29 -07:00
Benjamin Bouvier
ff37c9d8a4 [cranelift] Rejigger the compile API (#4540)
* Move `emit_to_memory` to `MachCompileResult`

This small refactoring makes it clearer to me that emitting to memory
doesn't require anything else from the compilation `Context`. While it's
a trivial change, it's a small public API change that shouldn't cause
too much trouble, and doesn't seem RFC-worthy. Happy to hear different
opinions about this, though!

* hide the MachCompileResult behind a method

* Add a `CompileError` wrapper type that references a `Function`

* Rename MachCompileResult to CompiledCode

* Additionally remove the last unsafe API in cranelift-codegen
2022-08-02 12:05:40 -07:00
Benjamin Bouvier
8d0224341c cranelift: Introduce a feature to enable trace logs (#4484)
* Don't use `log::trace` directly but a feature-enabled `trace` macro
* Don't emit disassembly based on the log level
2022-08-01 11:19:15 +02:00
Nick Fitzgerald
b24c561ceb cranelift: Don't log CLIF and assembly at debug level (#4503)
Too verbose. Only log them at trace level.
2022-07-21 15:31:05 -07:00
Sam Parker
9c43749dfe [RFC] Dynamic Vector Support (#4200)
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.

Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.

The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.

Copyright (c) 2022, Arm Limited.
2022-07-07 12:54:39 -07:00
Chris Fallin
b830c3cf93 Pull in regalloc2 v0.2.0, with no more separate scratch registers. (#4182)
RA2 recently removed the need for a dedicated scratch register for
cyclic moves (bytecodealliance/regalloc2#51). This has moderate positive
performance impact on function bodies that were register-constrained, as
it means that one more register is available. In Sightglass, I measured
+5-8% on `blake3-scalar`, at least among current benchmarks.
2022-05-23 12:51:04 -07:00
Chris Fallin
61dc38c065 Implement Spectre mitigations for table accesses and br_tables. (#4092)
Currently, we have partial Spectre mitigation: we protect heap accesses
with dynamic bounds checks. Specifically, we guard against errant
accesses on the misspeculated path beyond the bounds-check conditional
branch by adding a conditional move that is also dependent on the
bounds-check condition. This data dependency on the condition is not
speculated and thus will always pick the "safe" value (in the heap case,
a NULL address) on the misspeculated path, until the pipeline flushes
and recovers onto the correct path.

This PR uses the same technique both for table accesses -- used to
implement Wasm tables -- and for jumptables, used to implement Wasm
`br_table` instructions.

In the case of Wasm tables, the cmove picks the table base address on
the misspeculated path. This is equivalent to reading the first table
entry. This prevents loads of arbitrary data addresses on the
misspeculated path.

In the case of `br_table`, the cmove picks index 0 on the misspeculated
path. This is safer than allowing a branch to an address loaded from an
index under misspeculation (i.e., it preserves control-flow integrity
even under misspeculation).

The table mitigation is controlled by a Cranelift setting, on by
default. The br_table mitigation is always on, because it is part of the
single lowering pseudoinstruction. In both cases, the impact should be
minimal: a single extra cmove in a (relatively) rarely-used operation.

The table mitigation is architecture-independent (happens during
legalization); the br_table mitigation has been implemented for both x64
and aarch64. (I don't know enough about s390x to implement this
confidently there, but would happily review a PR to do the same on that
platform.)
2022-05-02 11:19:16 -07:00
Chris Fallin
a0318f36f0 Switch Cranelift over to regalloc2. (#3989)
This PR switches Cranelift over to the new register allocator, regalloc2.

See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.

Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:

```
Benchmark       Compilation (wallclock)     Execution (wallclock)
blake3-scalar   25% faster                  28% faster
blake3-simd     no diff                     no diff
meshoptimizer   19% faster                  17% faster
pulldown-cmark  17% faster                  no diff
bz2             15% faster                  no diff
SpiderMonkey,   21% faster                  2% faster
  fib(30)
clang.wasm      42% faster                  N/A
```
2022-04-14 10:28:21 -07:00
Alex Crichton
709f7e0c8a Enable SSE 4.2 unconditionally (#3833)
* Enable SSE 4.2 unconditionally

Fuzzing over the weekend found that `i64x2` comparison operators
require `pcmpgtq` which is an SSE 4.2 instruction. Along the lines of #3816
this commit unconditionally enables and requires SSE 4.2 for compilation
and fuzzing. It will no longer be possible to create a compiler for
x86_64 with simd enabled if SSE 4.2 is disabled.

* Update comment
2022-02-22 13:23:51 -06:00
Chris Fallin
1c014d129a Cranelift: ensure ISA level needed for SIMD is present when SIMD is enabled. (#3816)
Addresses #3809: when we are asked to create a Cranelift backend with
shared flags that indicate support for SIMD, we should check that the
ISA level needed for our SIMD lowerings is present.
2022-02-16 17:29:30 -08:00
Chris Fallin
2cf3069b6b Extend cold-blocks test to test debuginfo as well. 2022-02-04 23:15:16 -08:00
Chris Fallin
ef1b2d2fa8 Cranelift: Fix cold-blocks-related lowering bug.
If a block is marked cold but has side-effect-free code that is only
used by side-effectful code in non-cold blocks, we will erroneously fail
to emit it, causing a regalloc failure.

This is due to the interaction of block ordering and lowering: we rely
on block ordering to visit uses before defs (except for backedges) so
that we can effectively do an inline liveness analysis and skip lowering
operations that are not used anywhere. This "inline DCE" is needed
because instruction lowering can pattern-match and merge one instruction
into another, removing the need to generate the source instruction.

Unfortunately, the way that I added cold-block support in #3698 was
oblivious to this -- it just changed the block sort order. For
efficiency reasons, we generate code in its final order directly, so it
would not be tenable to generate it in e.g. RPO first and then reorder
cold blocks to the bottom; we really do want to visit in the same order
as the final code.

This PR fixes the bug by moving the point at which cold blocks are sunk
to emission-time instead. This is cheaper than either trying to visit
blocks during lowering in RPO but add to VCode out-of-order, or trying
to do some expensive analysis to recover proper liveness. It's not clear
that the latter would be possible anyway -- the need to lower some
instructions depends on other instructions' isel results/merging
success, so we really do need to visit in RPO, and we can't simply lower
all instructions as side-effecting roots (some can't be toplevel nodes).

The one downside of this approach is that the VCode itself still has
cold blocks inline; so in the text format (and hence compile-tests) it's
not possible to see the sinking. This PR adds a test for cold-block
sinking that actually verifies the machine code. (The test also includes
an add-instruction in the cold path that would have been incorrectly
skipped prior to this fix.)

Fortunately this bug would not have been triggered by the one current
use of cold blocks in #3699, because there the only operation in the
cold block was an (always effectful) call instruction. The worst-case
effect of the bug in other code would be a regalloc panic; no silent
miscompilations could result.
2022-01-21 10:47:49 -08:00
Anton Kirilov
89919f4b1f Pass the ISA-specific compilation flags to the ABI implementations
Copyright (c) 2021, Arm Limited.
2022-01-14 14:18:01 +00:00
bjorn3
55d722db05 Remove CodeSink 2022-01-11 17:10:37 +01:00
bjorn3
376c93bda0 Remove MachBackend
It is identical to TargetIsa
2022-01-06 15:08:12 +01:00
bjorn3
d50f27e8f9 Remove reg_universe method from MachBackend and MachInst 2022-01-06 14:39:50 +01:00
bjorn3
96b8879e4b Take reg_universe as argument to machinst::compile 2022-01-06 14:39:50 +01:00
bjorn3
8d1fc75b6b Make MachBackend::triple return &Triple
This avoids an unnecessary clone
2022-01-04 18:06:01 +01:00
Benjamin Bouvier
43a86f14d5 Remove more old backend ISA concepts (#3402)
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.

Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
2021-10-04 10:36:12 +02:00
Alex Crichton
1532516a36 Use relative call instructions between wasm functions (#3275)
* Use relative `call` instructions between wasm functions

This commit is a relatively major change to the way that Wasmtime
generates code for Wasm modules and how functions call each other.
Prior to this commit all function calls between functions, even if they
were defined in the same module, were done indirectly through a
register. To implement this the backend would emit an absolute 8-byte
relocation near all function calls, load that address into a register,
and then call it. While this technique is simple to implement and easy
to get right, it has two primary downsides associated with it:

* Function calls are always indirect which means they are more difficult
  to predict, resulting in worse performance.

* Generating a relocation-per-function call requires expensive
  relocation resolution at module-load time, which can be a large
  contributing factor to how long it takes to load a precompiled module.

To fix these issues, while also somewhat compromising on the previously
simple implementation technique, this commit switches wasm calls within
a module to using the `colocated` flag enabled in Cranelift-speak, which
basically means that a relative call instruction is used with a
relocation that's resolved relative to the pc of the call instruction
itself.

When switching the `colocated` flag to `true` this commit is also then
able to move much of the relocation resolution from `wasmtime_jit::link`
into `wasmtime_cranelift::obj` during object-construction time. This
frontloads all relocation work which means that there's actually no
relocations related to function calls in the final image, solving both
of our points above.

The main gotcha in implementing this technique is that there are
hardware limitations to relative function calls which mean we can't
simply blindly use them. AArch64, for example, can only go +/- 64 MB
from the `bl` instruction to the target, which means that if the
function we're calling is a greater distance away then we would fail to
resolve that relocation. On x86_64 the limits are +/- 2GB which are much
larger, but theoretically still feasible to hit. Consequently the main
increase in implementation complexity is fixing this issue.

This issue is actually already present in Cranelift itself, and is
internally one of the invariants handled by the `MachBuffer` type. When
generating a function relative jumps between basic blocks have similar
restrictions. This commit adds new methods for the `MachBackend` trait
and updates the implementation of `MachBuffer` to account for all these
new branches. Specifically the changes to `MachBuffer` are:

* For AAarch64 the `LabelUse::Branch26` value now supports veneers, and
  AArch64 calls use this to resolve relocations.

* The `emit_island` function has been rewritten internally to handle
  some cases which previously didn't come up before, such as:

  * When emitting an island the deadline is now recalculated, where
    previously it was always set to infinitely in the future. This was ok
    prior since only a `Branch19` supported veneers and once it was
    promoted no veneers were supported, so without multiple layers of
    promotion the lack of a new deadline was ok.

  * When emitting an island all pending fixups had veneers forced if
    their branch target wasn't known yet. This was generally ok for
    19-bit fixups since the only kind getting a veneer was a 19-bit
    fixup, but with mixed kinds it's a bit odd to force veneers for a
    26-bit fixup just because a nearby 19-bit fixup needed a veneer.
    Instead fixups are now re-enqueued unless they're known to be
    out-of-bounds. This may run the risk of generating more islands for
    19-bit branches but it should also reduce the number of islands for
    between-function calls.

  * Otherwise the internal logic was tweaked to ideally be a bit more
    simple, but that's a pretty subjective criteria in compilers...

I've added some simple testing of this for now. A synthetic compiler
option was create to simply add padded 0s between functions and test
cases implement various forms of calls that at least need veneers. A
test is also included for x86_64, but it is unfortunately pretty slow
because it requires generating 2GB of output. I'm hoping for now it's
not too bad, but we can disable the test if it's prohibitive and
otherwise just comment the necessary portions to be sure to run the
ignored test if these parts of the code have changed.

The final end-result of this commit is that for a large module I'm
working with the number of relocations dropped to zero, meaning that
nothing actually needs to be done to the text section when it's loaded
into memory (yay!). I haven't run final benchmarks yet but this is the
last remaining source of significant slowdown when loading modules,
after I land a number of other PRs both active and ones that I only have
locally for now.

* Fix arm32

* Review comments
2021-09-01 13:27:38 -05:00
Johnnie Birch
2d676d838f Implements f64x2.convert_low_i32x4_u for x64 2021-07-09 10:39:05 -07:00
Chris Fallin
11a2ef01e7 Provide BB layout info externally in terms of code offsets.
This is sometimes useful when performing analyses on the generated
machine code: for example, some kinds of code verifiers will want to do
a control-flow analysis, and it is much easier to do this if one does
not have to recover the CFG from the machine code (doing so requires
heavyweight analysis when indirect branches are involved). If one trusts
the control-flow lowering and only needs to verify other properties of
the code, this can be very useful.
2021-05-24 09:18:06 -07:00
Andrew Brown
02796fc670 x64: move encodings to a separate module
In order to benchmark the encoding code with criterion, the functions
and structures must be public. Moving this code to its own module
(instead of keeping as a submodule to `inst`), allows `inst` to remain
private. This avoids having to expose and document (or ignore
documenting) the numerous instruction variants in `inst` while allowing
access to the encoding code. This commit changes no functionality.
2021-05-13 10:46:08 -07:00
Peter Huene
0ddfe97a09 Change how flags are stored in serialized modules.
This commit changes how both the shared flags and ISA flags are stored in the
serialized module to detect incompatibilities when a serialized module is
instantiated.

It improves the error reporting when a compiled module has mismatched shared
flags.
2021-04-01 21:39:57 -07:00
Peter Huene
29d366db7b Add a compile command to Wasmtime.
This commit adds a `compile` command to the Wasmtime CLI.

The command can be used to Ahead-Of-Time (AOT) compile WebAssembly modules.

With the `all-arch` feature enabled, AOT compilation can be performed for
non-native architectures (i.e. cross-compilation).

The `Module::compile` method has been added to perform AOT compilation.

A few of the CLI flags relating to "on by default" Wasm features have been
changed to be "--disable-XYZ" flags.

A simple example of using the `wasmtime compile` command:

```text
$ wasmtime compile input.wasm
$ wasmtime input.cwasm
```
2021-04-01 19:38:18 -07:00
Chris Fallin
2d5db92a9e Rework/simplify unwind infrastructure and implement Windows unwind.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.

A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.

The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.

It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.

There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.

The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.

This PR adds the new backend on Windows to CI as well.
2021-03-11 20:03:52 -08:00
bjorn3
76d615049d Make the stackslot offsets available for debuginfo 2021-02-03 17:48:52 +01:00
Alex Crichton
503129ad91 Add a method to share Config across machines (#2608)
With `Module::{serialize,deserialize}` it should be possible to share
wasmtime modules across machines or CPUs. Serialization, however, embeds
a hash of all configuration values, including cranelift compilation
settings. By default wasmtime's selection of the native ISA would enable
ISA flags according to CPU features available on the host, but the same
CPU features may not be available across two machines.

This commit adds a `Config::cranelift_clear_cpu_flags` method which
allows clearing the target-specific ISA flags that are automatically
inferred by default for the native CPU. Options can then be
incrementally built back up as-desired with teh `cranelift_other_flag`
method.
2021-01-26 15:59:12 -06:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Chris Fallin
c9a81f008d x64 backend: fix condition-code used for part of explicit heap check.
A dynamic heap address computation may create up to two conditional
branches: the usual bounds-check, but also (in some cases) an
offset-addition overflow check.

The x64 backend had reversed the condition code for this check,
resulting in an always-trapping execution for a valid offset. I'm
somewhat surprised this has existed so long, but I suppose the
particular conditions (large offset, small offset guard, dynamic heap)
have been somewhat rare in our testing so far.

Found via fuzzing in #2453.
2020-12-02 10:40:53 -08:00
Yury Delendik
f60c0f3ec3 cranelift: refactor unwind logic to accommodate multiple backends (#2357)
*    Make cranelift_codegen::isa::unwind::input public
*    Move UnwindCode's common offset field out of the structure
*    Make MachCompileResult::unwind_info more generic
*    Record initial stack pointer offset
2020-11-05 16:57:40 -06:00
Yury Delendik
de4af90af6 machinst x64: New backend unwind (#2266)
Addresses unwind for experimental x64 backend. The preliminary code enables backtrace on SystemV call convension.
2020-10-23 15:19:41 -05:00
Benjamin Bouvier
c5bbc87498 machinst: allow passing constant information to the instruction emitter;
A new associated type Info is added to MachInstEmit, which is the
immutable counterpart to State. It can't easily be constructed from an
ABICallee, since it would require adding an associated type to the
latter, and making so leaks the associated type in a lot of places in
the code base and makes the code harder to read. Instead, the EmitInfo
state can simply be passed to the `Vcode::emit` function directly.
2020-10-08 09:21:51 +02:00
Chris Fallin
71768bb6cf Fix AArch64 ABI to respect half-caller-save, half-callee-save vec regs.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.

In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).

Fixes #2254.
2020-10-06 14:44:02 -07:00
Chris Fallin
e8f772c1ac x64 new backend: port ABI implementation to shared infrastructure with AArch64.
Previously, in #2128, we factored out a common "vanilla 64-bit ABI"
implementation from the AArch64 ABI code, with the idea that this should
be largely compatible with x64. This PR alters the new x64 backend to
make use of the shared infrastructure, removing the duplication that
existed previously. The generated code is nearly (not exactly) the same;
the only difference relates to how the clobber-save region is padded in
the prologue.

This also changes some register allocations in the aarch64 code because
call support in the shared ABI infra now passes a temp vreg in, rather
than requiring use of a fixed, non-allocable temp; tests have been
updated, and the runtime behavior is unchanged.
2020-09-08 17:59:01 -07:00
Andrew Brown
999e04a2c4 machinst x64: refactor imports to use rustfmt convention
This change is a pure refactoring--no change to functionality. It removes newlines between the `use ...` statements in the x64 backend so that rustfmt can format them according to its convention. I noticed some files had followed a manual convention but subsequent additions did not seem to fit; this change fixes that and lightly coalesces some of the occurrences of `use a::b; use a::c;` into `use::{b, c}`.
2020-08-04 09:17:54 -07:00
Benjamin Bouvier
abf157bd69 machinst x64: Only use the feature flag to enable the x64 new backend;
Before this patch, running the x64 new backend would require both
compiling with --features experimental_x64 and running with
`use_new_backend`.

This patches changes this behavior so that the runtime flag is not
needed anymore: using the feature flag will enforce usage of the new
backend everywhere, making using and testing it much simpler:

    cargo run --features experimental_x64 ;; other CLI options/flags

This also gives a hint at what the meta language generation would look
like after switching to the new backend.

Compiling only with the x64 codegen flag gives a nice compile time speedup.
2020-07-15 13:11:28 +02:00
Benjamin Bouvier
c9a3f05afd machinst x64: implement calls and int cmp/store/loads;
This makes it possible to run a simple recursive fibonacci function in
wasmtime.
2020-06-25 16:20:33 +02:00
Chris Fallin
fc2a6f273b Three fixes to various SpiderMonkey-related issues:
- Properly mask constant values down to appropriate width when
  generating a constant value directly in aarch64 backend. This was a
  miscompilation introduced in the new-isel refactor. In combination
  with failure to respect NarrowValueMode, this resulted in a very
  subtle bug when an `i32` constant was used in bit-twiddling logic.

- Add support for `iadd_ifcout` in aarch64 backend as used in explicit
  heap-check mode. With this change, we no longer fail heap-related
  tests with the huge-heap-region mode disabled.

- Remove a panic that was occurring in some tests that are currently
  ignored on aarch64, by simply returning empty/default information in
  `value_label` functionality rather than touching unimplemented APIs.
  This is not a bugfix per-se, but removes confusing panic messages from
  `cargo test` output that might otherwise mislead.
2020-06-08 13:02:00 -07:00
Chris Fallin
687aca00fe Update x64 backend to use new lowering APIs. 2020-05-18 16:25:15 -07:00
Chris Fallin
17cef9140c MachInst backend: don't reallocate RealRegUniverses for each function
compilation.

This saves ~0.14% instruction count, ~0.18% allocated bytes, and ~1.5%
allocated blocks on a `clif-util wasm` compilation of `bz2.wasm` for
aarch64.
2020-05-08 15:35:16 -07:00
Benjamin Bouvier
fa54422854 Add a work-in-progress backend for x86_64 using the new instruction selection;
Most of the work is credited to Julian Seward.

Co-authored-by: Julian Seward <jseward@acm.org>
Co-authored-by: Chris Fallin <cfallin@mozilla.com>
2020-05-05 16:35:41 +02:00