These sign bit manipulations need to use a -0.0 floating point constant
which we didn't have a way of materializing previously.
Add a ieee32.bits(0x...) syntax to the Python AST nodes that creates am
f32 immediate value with the exact requested bitwise representation.
See #144 for discussion.
- Add a new GlobalVar entity type both in Python and Rust.
- Define a UnaryGlobalVar instruction format containing a GlobalVar
reference.
- Add a globalvar.rs module defining the GlobalVarData with support for
'vmctx' and 'deref' global variable kinds.
Langref:
Add a section about global variables and the global_addr
instruction.
Parser:
Add support for the UnaryGlobalVar instruction format as well as
global variable declarations in the preamble.
* Add Atom and Literal base classes to CDSL Ast. Change substitution() and copy() on Def/Apply/Rtl to support substituting Var->Union[Var, Literal]. Check in Apply() constructor kinds of passed in Literals respect instruction signature
* Change verify_semantics to check all possible instantiations of enumerated immediates (needed to descrive icmp). Add all bitvector comparison primitives and bvite; Change set_semantics to optionally accept XForms; Add semantics for icmp; Fix typing errors in semantics/{smtlib, elaborate, __init__}.py after the change of VarMap->VarAtomMap
* Forgot macros.py
* Nit obscured by testing with mypy enabled present.
* Typo
The meta language patterns sometimes need to refer to specific values of
enumerated immediate operands. The dot syntax provides a namespaced,
typed way of doing that: icmp(intcc.ult, a, x).
Add an ast.Enumerator class for representing this kind of AST leaf node.
Add value definitions for the intcc and floatcc immediate operand kinds.
The per-instruction format low-level constructors in InstBuilder should
be independent of the relative ordering of value and immediate operands
in order to prepare for the future instruction format merger.
Reorder their arguments such that all the immediate operands are placed
before the value operands.
For instruction formats that use a value list representation, just take
a single ValueList argument. The value lists are created by the
individual instruction constructors. This means that the format
constructor doesn't care how many of the instructions operands are
'fixed' and how many are 'variable' arguments.
These two tuples contain operand indexes of the explicit value operands
and immediate operands respectively. We can no longer use the
instruction format value_operands field.
A few operands have a fixed type assigned. Create a singleton type
variable for these exceptions. Most instructions are polymorphic, so
this is a little overhead.
Eliminate the Operand.typ field and replace it with an Operand.typevar
field which is always a TypeVar, but which only exists in VALUE
operands.
This method caused lots of import cycles when type checking.
Use isinstance() in the Operand constructor instead to decipher the
OperandSpec union type.