I've run up against the `Into`-vs-`From` impls a few times and figured
I'd go ahead and put up a refactoring. This switches `Into` impls into
`From` impls which allows using both traits instead of just the `Into`
version. Additionally this removes a few small `as` casts in favor of
infallible `from`/`into` or `try_from` with error handling.
This fixes some fuzz bugs that came about enabling simd where nan
canonicalization is performed on the fuzzers but cranelift would panic
on these ops for vectors. This adds some custom codegen with `bitselect`
to ensure any nan lanes are canonical-nan lanes in the canonicalized
operations.
The AArch64 support was a bit broken and was using Armv7 style
barriers, which aren't required with Armv8 acquire-release
load/stores.
The fallback CAS loops and RMW, for AArch64, have also been updated
to use acquire-release, exclusive, instructions which, again, remove
the need for barriers. The CAS loop has also been further optimised
by using the extending form of the cmp instruction.
Copyright (c) 2021, Arm Limited.
* Consolidate address calculations for atomics
This commit consolidates all calcuations of guest addresses into one
`prepare_addr` function. This notably remove the atomics-specifics paths
as well as the `prepare_load` function (now renamed to `prepare_addr`
and folded into `get_heap_addr`).
The goal of this commit is to simplify how addresses are managed in the
code generator for atomics to use all the shared infrastrucutre of other
loads/stores as well. This additionally fixes#3132 via the use of
`heap_addr` in clif for all operations.
I also added a number of tests for loads/stores with varying alignments.
Originally I was going to allow loads/stores to not be aligned since
that's what the current formal specification says, but the overview of
the threads proposal disagrees with the formal specification, so I
figured I'd leave it as-is but adding tests probably doesn't hurt.
Closes#3132
* Fix old backend
* Guarantee misalignment checks happen before out-of-bounds
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Change VMMemoryDefinition::current_length to `usize`
This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.
The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).
This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).
The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.
Closes#3022
* Add tests for memory.size at maximum memory size
* Add a dfg helper method
PR #3131 fixed the failing builds by allowing this field to be dead.
After looking at it further the field is not being used and can be
removedi completely.
One of the fields of `TargetIsa` isn't used in the
cranelift-codegen-meta crate, but instead of refactoring to try to
remove it this just adds `#[allow(dead_code)]` for now in the assumption
that when the old backends go away this will probably go away as well.
Fixes#2943, though not as optimally as may be desired. With x64 SIMD
instructions, the memory operand must be aligned--this change adds that
check. There are cases, however, where we can do better--see #3106.
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).
Most of the time, when people want logging for their Rust programs, they do
something like:
RUST_LOG=debug cargo run
This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:
RUST_LOG=debug,cranelift=info cargo run
The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:
RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...
Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
This commit addresses two issues:
* A panic when shifting any non i128 type by i128 amounts (#3064)
* Wrong results when lowering shifts with small types (i8, i16)
In these types when shifting for amounts larger than the size of the
type, we would not get the wrapping behaviour that we see on i32 and i64.
This is because in these larger types, the wrapping behaviour is automatically
implemented by using the appropriate instruction, however we do not
have i8 and i16 specific instructions, so we have to manually wrap
the shift amount with an AND instruction.
This issue is also found on x86_64 and s390x, and a separate issue will
be filed for those.
Closes#3064