Commit Graph

93 Commits

Author SHA1 Message Date
Alex Crichton
ab1958434a Bump to 0.21.0 (#2359) 2020-11-05 09:39:53 -06:00
Alex Crichton
a277cf5ee4 Store WasmFuncType in FuncType (#2365)
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.

The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
2020-11-05 08:49:03 -06:00
Alex Crichton
6b137c2a3d Move native signatures out of Module (#2362)
After compilation there's actually no need to hold onto the native
signature for a wasm function type, so this commit moves out the
`ir::Signature` value from a `Module` into a separate field that's
deallocated when compilation is finished. This simplifies the
`SignatureRegistry` because it only needs to track wasm functino types
and it also means less work is done for `Func::wrap`.
2020-11-04 14:22:37 -06:00
Nick Fitzgerald
285edeec3e Merge pull request #2319 from alexcrichton/remove-trampolines-from-instance
Refactor how signatures/trampolines are stored in `Store`
2020-11-04 10:49:55 -08:00
Ulrich Weigand
fa9c2a5172 Fix off-by-one error looking up frame info for a function (#2349)
The ModuleFrameInfo and FunctionInfo data structures maintain
a list of ranges via a BTreeMap.  The key to that map is one
past the end of the module/function in question.  This causes
a problem in the case of immediately adjacent ranges.  For
example, if we have two functions occupying adjacent ranges:
  A:   0-100
  B: 100-200
function A is stored with a key of 100 and B with a key of 200.

Now, when looking up the function associated with address 100,
we'd expect to find B.  However the current code:

       let (end, func) = info.functions.range(pc..).next()?;
       if pc < func.start || *end < pc {

will look up the value 100 in the map and return function A,
which will then fail the pc < func.start check in the next
line, so the result will be failure.

To fix this problem, make sure that the key used when
registering functions or modules is the address of the
last byte, not one past the end.
2020-11-03 13:54:27 -06:00
Julian Seward
5a5fb11979 CL/aarch64: implement the wasm SIMD i32x4.dot_i16x8_s instruction
This patch implements, for aarch64, the following wasm SIMD extensions

  i32x4.dot_i16x8_s instruction
  https://github.com/WebAssembly/simd/pull/127

It also updates dependencies as follows, in order that the new instruction can
be parsed, decoded, etc:

  wat          to  1.0.27
  wast         to  26.0.1
  wasmparser   to  0.65.0
  wasmprinter  to  0.2.12

The changes are straightforward:

* new CLIF instruction `widening_pairwise_dot_product_s`

* translation from wasm into `widening_pairwise_dot_product_s`

* new AArch64 instructions `smull`, `smull2` (part of the `VecRRR` group)

* translation from `widening_pairwise_dot_product_s` to `smull ; smull2 ; addv`

There is no testcase in this commit, because that is a separate repo.  The
implementation has been tested, nevertheless.
2020-11-03 14:25:04 +01:00
Alex Crichton
10b5cc50c3 Further compress the in-memory representation of address maps (#2324)
This commit reduces the size of `InstructionAddressMap` from 24 bytes to
8 bytes by dropping the `code_len` field and reducing `code_offset` to
`u32` instead of `usize`. The intention is to primarily make the
in-memory version take up less space, and the hunch is that the
`code_len` is largely not necessary since most entries in this map are
always adjacent to one another. The `code_len` field is now implied by
the `code_offset` field of the next entry in the map.

This isn't as big of an improvement to serialized module size as #2321
or #2322, primarily because of the switch to variable-length encoding.
Despite this though it shaves about 10MB off the encoded size of the
module from #2318
2020-11-02 20:37:18 -06:00
Alex Crichton
3887881800 Refactor how signatures/trampolines are stored in Store
This commit refactors where trampolines and signature information is
stored within a `Store`, namely moving them from
`wasmtime_runtime::Instance` instead to `Store` itself. The goal here is
to remove an allocation inside of an `Instance` and make them a bit
cheaper to create. Additionally this should open up future possibilities
like not creating duplicate trampolines for signatures already in the
`Store` when using `Func::new`.
2020-11-02 07:54:18 -08:00
Alex Crichton
61f0b8fc56 Remove Windows-specific code for static memory bounds
Added in c4e10227de I think the original
reason (which I'm not entirely knowledgeable of) may no longer be
applicable? In any case this is a significant difference on Windows from
other platforms because it makes loads/stores of wasm code have manual
checks instead of relying on the guard page, causing runtime and
compile-time slowdowns on Windows-only.

I originally rediscovered this when investigating #2318 and saw that
both the compile time of the module in question and trap information
tables were much larger than they were on Linux. Removing this
Windows-specific configuration fixed the discrepancies and afterwards
Linux and Windows were basically the same.
2020-10-28 16:49:53 -07:00
Leonardo Yvens
bde9555793 Add Trap::trap_code (#2309)
* add Trap::trap_code

* Add non-exhaustive wasmtime::TrapCode

* wasmtime: Better document TrapCode

* move and refactor test
2020-10-27 16:30:45 -05:00
Alex Crichton
27233857c5 Encode modules with variable-length integers (#2322)
Update `Module::{serialize,deserialize}` to use variable-length integers
with `bincode` to make the output artifacts smaller. Locally this
reduces the size of #2318 from 160 to 110 MB, a 30% decrease in size!
Deserialization performance is slightly slower, but seemingly within the
range of noise locally for me.
2020-10-26 09:52:29 -05:00
Andrew Brown
6ebbab61b9 Update cfg-if dependency 2020-10-23 16:50:51 -07:00
Nick Fitzgerald
1532834f3e Merge pull request #2305 from alexcrichton/no-arc
Don't store `Arc<VMInterrupts>` in instances
2020-10-21 13:21:51 -07:00
Alex Crichton
461ed42772 Remove the finished_functions field in Instance
Turns out we don't actually need it anywhere any more! This removes an
allocation when instantiating.
2020-10-21 11:43:11 -07:00
Alex Crichton
04e85b044e Don't store Arc<VMInterrupts> in instances
Similar to other data structures owned by the `Store` there's no need
for `Instance` to have a strong `Arc` reference, instead it's sufficient
for `Store` to have the owning reference.
2020-10-21 11:42:57 -07:00
Nick Fitzgerald
76998f0404 Merge pull request #2300 from alexcrichton/no-allocate-isa
Don't allocate a new ISA for each `Func::wrap`
2020-10-18 13:36:29 -07:00
Alex Crichton
b8794448b0 Avoid allocations in trampoline shims
There's no need to name each export since each synthetic instance we're
creating only has one export, so let's use the empty string which
doesn't require any allocations.
2020-10-18 11:54:52 -07:00
Alex Crichton
4a82f17d91 Don't allocate a new ISA for each Func::wrap
Instead we can reuse the existing one in `Store`.
2020-10-16 08:21:32 -07:00
Andrew Brown
f36ceac010 Fix typo 2020-10-15 11:31:04 -07:00
Alex Crichton
e659d5cecd Add initial support for the multi-memory proposal (#2263)
This commit adds initial (gated) support for the multi-memory wasm
proposal. This was actually quite easy since almost all of wasmtime
already expected multi-memory to be implemented one day. The only real
substantive change is the `memory.copy` intrinsic changes, which now
accounts for the source/destination memories possibly being different.
2020-10-13 19:13:52 -05:00
Alex Crichton
9e87e45745 Update wasmparser, wast, and spec test suite (#2264)
This brings in a number of SIMD opcode renames, various other test suite
updates, as well as some new proposed SIMD opcodes too.
2020-10-05 13:51:16 -05:00
zhiqiangxu
1d1de35ad1 optimize register_jit_code (#2262) 2020-10-05 13:14:44 -05:00
Alex Crichton
2c6841041d Validate modules while translating (#2059)
* Validate modules while translating

This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.

Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.

This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!

* Read function operators until EOF

This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
2020-10-05 11:02:01 -05:00
zhiqiangxu
a8a6e4e69d optimize get_wasmtime_signature (#2243) 2020-09-28 23:49:46 -05:00
zhiqiangxu
0de5f7cf5c rm useless code (#2229) 2020-09-26 00:49:56 -05:00
Alex Crichton
5e08eb3b83 Bump wasmtime to 0.20.0 (#2222)
At the same time bump cranelift crates to 0.67.0
2020-09-23 13:54:02 -05:00
Joshua Nelson
d28abad441 Upgrade to target-lexicon 0.11
This allows downstream library users to use `CDataModel` without having
to install two different versions of target-lexicon.
2020-09-15 11:40:09 -07:00
Nick Fitzgerald
89f1e02f1f Remove executable bits from a few Rust source files 2020-09-14 16:27:47 -07:00
Max de Danschutter
f1a5e55b98 Increase into-func to accept 16 arguments (#2170) 2020-08-28 10:39:48 -05:00
Johnnie Birch
0b67b22eda Update renamed document lint for broken links
Renames intra_doc_link_resolution_failure to broken_intra_doc_links
2020-08-20 14:24:06 -07:00
Nick Fitzgerald
5f36d7eab7 Merge pull request #2118 from fitzgen/enable-ref-types-by-default
Enable ref types and bulk memory operations by default
2020-08-07 17:41:05 -07:00
Nick Fitzgerald
94e4bad1e0 Enable reference types and bulk memory operations by default 2020-08-07 16:54:51 -07:00
Alex Crichton
c7cd70fcec wasmtime: Refactor how imports are resolved (#2102)
This commit removes all import resolution handling from the
`wasmtime-jit` crate, instead moving the logic to the `wasmtime` crate.
Previously `wasmtime-jit` had a generic `Resolver` trait and would do
all the import type matching itself, but with the upcoming
module-linking implementation this is going to get much trickier.

The goal of this commit is to centralize all meaty "preparation" logic
for instantiation into one location, probably the `wasmtime` crate
itself. Instantiation will soon involve recursive instantiation and
management of alias definitions as well. Having everything in one
location, especially with access to `Store` so we can persist
instances for safety, will be quite convenient.

Additionally the `Resolver` trait isn't really necessary any more since
imports are, at the lowest level, provided as a list rather than a map
of some kind. More generic resolution functionality is provided via
`Linker` or user layers on top of `Instance::new` itself. This makes
matching up provided items to expected imports much easier as well.

Overall this is largely just moving code around, but most of the code
in the previous `resolve_imports` phase can be deleted since a lot of it
is handled by surrounding pieces of `wasmtime` as well.
2020-08-07 16:38:01 -05:00
Alex Crichton
08f9eb1725 Making caching support optional in Wasmtime (#2119)
This commit moves all of the caching support that currently lives in
`wasmtime-environ` into a `wasmtime-cache` crate and makes it optional. The
goal here is to slim down the `wasmtime-environ` crate and clearly separate
boundaries where caching is a standalone and optional feature, not intertwined
with other crates.
2020-08-07 15:42:40 -05:00
Nick Fitzgerald
fdbc9e351f Merge pull request #2111 from fitzgen/rename-stackmap-to-stack-map
Rename "Stackmap" to "StackMap"
2020-08-07 10:46:38 -07:00
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Christopher Agia
2482bd80c2 Caller get_export() implemented for Extern::Func. (#2108)
* Caller get_export() implemented for func

* update tests for get_export() Extern::Func return

Signed-off-by: Christopher Agia <chrisagia@google.com>

* document get_export() for Extern::Func

Signed-off-by: Christopher Agia <chrisagia@google.com>
2020-08-07 11:24:42 -05:00
Alex Crichton
3d2e0e55f2 Remove the local field of Module (#2091)
This was added long ago at this point to assist with caching, but
caching has moved to a different level such that this wonky second level
of a `Module` isn't necessary. This commit removes the `ModuleLocal`
type to simplify accessors and generally make it easier to work with.
2020-08-04 12:29:16 -05:00
Julian Seward
25e31739a6 Implement Wasm Atomics for Cranelift/newBE/aarch64.
The implementation is pretty straightforward.  Wasm atomic instructions fall
into 5 groups

* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences

and the implementation mirrors that structure, at both the CLIF and AArch64
levels.

At the CLIF level, there are five new instructions, one for each group.  Some
comments about these:

* for those that take addresses (all except fences), the address is contained
  entirely in a single `Value`; there is no offset field as there is with
  normal loads and stores.  Wasm atomics require alignment checks, and
  removing the offset makes implementation of those checks a bit simpler.

* atomic loads and stores get their own instructions, rather than reusing the
  existing load and store instructions, for two reasons:

  - per above comment, makes alignment checking simpler

  - reuse of existing loads and stores would require extension of `MemFlags`
    to indicate atomicity, which sounds semantically unclean.  For example,
    then *any* instruction carrying `MemFlags` could be marked as atomic, even
    in cases where it is meaningless or ambiguous.

* I tried to specify, in comments, the behaviour of these instructions as
  tightly as I could.  Unfortunately there is no way (per my limited CLIF
  knowledge) to enforce the constraint that they may only be used on I8, I16,
  I32 and I64 types, and in particular not on floating point or vector types.

The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.

At the AArch64 level, there are also five new instructions, one for each
group.  All of them except `::Fence` contain multiple real machine
instructions.  Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively.  The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.

One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional.  In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code.  That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere.  Hence we must present it as a single indivisible
unit, as we do here.  It also has the benefit of reducing the total amount of
work the RA has to do.

The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally.  Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28.  We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero.  x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.

One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done.  In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg.  For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.

There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.

In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion.  Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2020-08-04 09:35:50 +02:00
Alex Crichton
65eaca35dd Refactor where results of compilation are stored (#2086)
* Refactor where results of compilation are stored

This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.

The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.

Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.

The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".

* Don't clear out fields, just don't store them

Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
2020-08-03 12:20:51 -05:00
Yury Delendik
42127aac4e Refactor Cache logic to include debug information (#2065)
* move caching to the CompilationArtifacts

* mv cache_config from Compiler to CompiledModule

* hash isa flags

* no cache for wasm2obj

* mv caching to wasmtime crate

* account each Compiler field when hash
2020-07-23 12:10:13 -05:00
Yury Delendik
399ee0a54c Serialize and deserialize compilation artifacts. (#2020)
* Serialize and deserialize Module
* Use bincode to serialize
* Add wasm_module_serialize; docs
* Simple tests
2020-07-21 15:05:50 -05:00
Alex Crichton
c3ff0754d4 Fix a panic with Func::new and reference types (#2039)
Currently `Func::new` will panic if one of the arguments of the function
is a reference type and the `Store` doesn't have reference types
enabled. This happens because cranelift isn't configure to enable stack
maps but the register allocators expects them to exist when reference
types are seen.

The fix here is to always enable reference types in cranelift for our
trampoline generation and `Func::new`. This should hopefully ensure that
trampolines are generated correctly and they'll just not be able to get
hooked up to an `Instance` because validation will prevent reference
types from being used elsewhere.
2020-07-17 12:05:42 -05:00
Alex Crichton
63d5b91930 Wasmtime 0.19.0 and Cranelift 0.66.0 (#2027)
This commit updates Wasmtime's version to 0.19.0, Cranelift's version to
0.66.0, and updates the release notes as well.
2020-07-16 12:46:21 -05:00
Alex Crichton
1000f21338 Update wasmparser to 0.59.0 (#2013)
This commit is intended to update wasmparser to 0.59.0. This primarily
includes bytecodealliance/wasm-tools#40 which is a large update to how
parsing and validation works. The impact on Wasmtime is pretty small at
this time, but over time I'd like to refactor the internals here to lean
more heavily on that upstream wasmparser refactoring.

For now, though, the intention is to get on the train of wasmparser's
latest `main` branch to ensure we get bug fixes and such.

As part of this update a few other crates and such were updated. This is
primarily to handle the new encoding of `ref.is_null` where the type is
not part of the instruction encoding any more.
2020-07-13 16:22:41 -05:00
Yury Delendik
b2551bb4d0 Make wasmtime_environ::Module serializable (#2005)
* Define WasmType/WasmFuncType in the Cranelift
* Make `Module` serializable
2020-07-10 15:56:43 -05:00
Nick Fitzgerald
62655cdbe7 wasmtime: Document support for {extern,func}ref in Func::wrap 2020-07-07 14:27:07 -07:00
Nick Fitzgerald
392bbadac7 wasmtime: Ensure that Func::wrap'd return values are compatible with the current store 2020-07-07 14:27:07 -07:00
Nick Fitzgerald
3e63774e99 wasmtime: Add support for Option<Func> args and returns in Func::wrap 2020-07-07 11:09:20 -07:00
Nick Fitzgerald
46ef80bf2f wasmtime: Support ExternRefs in Func::wrap'd functions
Fixes #1868
2020-07-07 11:09:20 -07:00