* Don't copy executable code into a `CodeMemory`
This commit moves a copy from compiled artifacts into a `CodeMemory`. In
general this commit drastically changes the meaning of a `CodeMemory`.
Previously it was an iteratively-pushed-on structure that would
accumulate executable code over time. Afterwards, however, it's a
manager for an `MmapVec` which updates the permissions on text section
to ensure that the pages are executable.
By taking ownership of an `MmapVec` within a `CodeMemory` there's no
need to copy any data around, which means that the `.text` section in
the ELF image produced by Wasmtime is usable as-is after placement in
memory and relocations have been resolved. This moves Wasmtime one step
closer to being able to directly use a module after it's `mmap`'d into
memory, optimizing when a module is loaded.
* Fix windows section alignment
* Review comments
* Remove some allocations in `CodeMemory`
This commit removes the `FinishedFunctions` type as well as allocations
associated with trampolines when allocating inside of a `CodeMemory`.
The main goal of this commit is to improve the time spent in
`CodeMemory` where currently today a good portion of time is spent
simply parsing symbol names and trying to extract function indices from
them. Instead this commit implements a new strategy (different from #3236)
where compilation records offset/length information for all
functions/trampolines so this doesn't need to be re-learned from the
object file later.
A consequence of this commit is that this offset information will be
decoded/encoded through `bincode` unconditionally, but we can also
optimize that later if necessary as well.
Internally this involved quite a bit of refactoring since the previous
map for `FinishedFunctions` was relatively heavily relied upon.
* comments
* Move wasm data/debuginfo into the ELF compilation image
This commit moves existing allocations of `Box<[u8]>` stored separately
from compilation's final ELF image into the ELF image itself. The goal
of this commit is to reduce the amount of data which `bincode` will need
to process in the future. DWARF debugging information and wasm data
segments can be quite large, and they're relatively rarely read, so
there's typically no need to copy them around. Instead by moving them
into the ELF image this opens up the opportunity in the future to
eliminate copies and use data directly as-found in the image itself.
For information accessed possibly-multiple times, such as the wasm data
ranges, the indexes of the data within the ELF image are computed when
a `CompiledModule` is created. These indexes are then used to directly
index into the image without having to root around in the ELF file each
time they're accessed.
One other change located here is that the symbolication context
previously cloned the debug information into it to adhere to the
`'static` lifetime safely, but this isn't actually ever used in
`wasmtime` right now so the unsafety around this has been removed and
instead borrowed data is returned (no more clones, yay!).
* Fix lightbeam
* Reduce indentation in `to_paged`
Use a few early-returns from `match` to avoid lots of extra indentation.
* Move wasm data sections out of `wasmtime_environ::Module`
This is the first step down the road of #3230. The long-term goal is
that `Module` is always `bincode`-decoded, but wasm data segments are a
possibly very-large portion of this residing in modules which we don't
want to shove through bincode. This refactors the internals of wasmtime
to be ok with this data living separately from the `Module` itself,
providing access at necessary locations.
Wasm data segments are now extracted from a wasm module and
concatenated directly. Data sections then describe ranges within this
concatenated list of data, and passive data works the same way. This
implementation does not lend itself to eventually optimizing the case
where passive data is dropped and no longer needed. That's left for a
future PR.
* Remove unnecessary into_iter/map
Forgotten from a previous refactoring, this variable was already of the
right type!
* Move `wasmtime_jit::Compiler` into `wasmtime`
This `Compiler` struct is mostly a historical artifact at this point and
wasn't necessarily pulling much weight any more. This organization also
doesn't lend itself super well to compiling out `cranelift` when the
`Compiler` here is used for both parallel iteration configuration
settings as well as compilation.
The movement into `wasmtime` is relatively small, with
`Module::build_artifacts` being the main function added here which is a
merging of the previous functions removed from the `wasmtime-jit` crate.
* Add a `cranelift` compile-time feature to `wasmtime`
This commit concludes the saga of refactoring Wasmtime and making
Cranelift an optional dependency by adding a new Cargo feature to the
`wasmtime` crate called `cranelift`, which is enabled by default.
This feature is implemented by having a new cfg for `wasmtime` itself,
`cfg(compiler)`, which is used wherever compilation is necessary. This
bubbles up to disable APIs such as `Module::new`, `Func::new`,
`Engine::precompile_module`, and a number of `Config` methods affecting
compiler configuration. Checks are added to CI that when built in this
mode Wasmtime continues to successfully build. It's hoped that although
this is effectively "sprinkle `#[cfg]` until things compile" this won't
be too too bad to maintain over time since it's also an use case we're
interested in supporting.
With `cranelift` disabled the only way to create a `Module` is with the
`Module::deserialize` method, which requires some form of precompiled
artifact.
Two consequences of this change are:
* `Module::serialize` is also disabled in this mode. The reason for this
is that serialized modules contain ISA/shared flags encoded in them
which were used to produce the compiled code. There's no storage for
this if compilation is disabled. This could probably be re-enabled in
the future if necessary, but it may not end up being all that necessary.
* Deserialized modules are not checked to ensure that their ISA/shared
flags are compatible with the host CPU. This is actually already the
case, though, with normal modules. We'll likely want to fix this in
the future using a shared implementation for both these locations.
Documentation should be updated to indicate that `cranelift` can be
disabled, although it's not really the most prominent documentation
because this is expected to be a somewhat niche use case (albeit
important, just not too common).
* Always enable cranelift for the C API
* Fix doc example builds
* Fix check tests on GitHub Actions
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
* Reimplement how unwind information is stored
This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.
Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:
* On Windows the implementation was much easier. The unwinding
information on Windows is already stored after the function itself in
the text section. This was actually slightly duplicated in object
building and in code memory allocation. Now the object building
continues to do the same, recording unwinding information after
functions, and code memory no longer manually tracks this.
Additionally Wasmtime will emit a special custom section in the object
file with unwinding information which is the list of
`RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
means that the object file has all the information precompiled into it
and registration at runtime is simply passing a few pointers around to
the runtime.
* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
section is created on-the-fly with offsets in FDEs specified as the
absolute address that functions are loaded at. This absolute
address hindered the ability to precompile the FDE into the object
file itself. I've switched how addresses are encoded, though, to using
`DW_EH_PE_pcrel` which means that FDE addresses are now specified
relative to the FDE itself. This means that we can maintain a fixed
offset between the `.eh_frame` loaded in memory and the beginning of
code memory. When doing so this enables precompiling the `.eh_frame`
section into the object file and at runtime when loading an object no
further construction of unwinding information is needed.
The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.
This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.
Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.
It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.
* Remove isa reexport from wasmtime-environ
* Trim down reexports of `cranelift-codegen`
Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.
* Fix debug tests
* Review comments
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* Add resource limiting to the Wasmtime API.
This commit adds a `ResourceLimiter` trait to the Wasmtime API.
When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.
This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.
A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.
* Code review feedback.
* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
`StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
`wasmtime::Table`.
* Code review feedback and bug fix.
* `Memory::new` now returns `Result<Self>` so that an error can be returned if
the initial requested memory exceeds any limits placed on the store.
* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.
* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
implementations are free to capture any context they want, so no need to
unnecessarily store a weak reference to `Store` from the proxy type.
* Fixed a bug in the pooling instance allocator where an instance would be
leaked from the pool. Previously, this would only have happened if the OS was
unable to make the necessary linear memory available for the instance. With
these changes, however, the instance might not be created due to limits
placed on the store. We now properly deallocate the instance on error.
* Added more tests, including one that covers the fix mentioned above.
* Code review feedback.
* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
`ResourceLimiter`.
This commit uses a two-phase lookup of stack map information from modules
rather than giving back raw pointers to stack maps.
First the runtime looks up information about a module from a pc value, which
returns an `Arc` it keeps a reference on while completing the stack map lookup.
Second it then queries the module information for the stack map from a pc
value, getting a reference to the stack map (which is now safe because of the
`Arc` held by the runtime).
* Make `FunctionInfo` public and `CompiledModule::func_info` return it.
* Make the `StackMapLookup` trait unsafe.
* Add comments for the purpose of `EngineHostFuncs`.
* Rework ownership model of shared signatures: `SignatureCollection` in
conjunction with `SignatureRegistry` is now used so that the `Engine`,
`Store`, and `Module` don't need to worry about unregistering shared
signatures.
* Implement `Func::param_arity` and `Func::result_arity` in terms of
`Func::ty`.
* Make looking up a trampoline with the module registry more efficient by doing
a binary search on the function's starting PC value for the owning module and
then looking up the trampoline with only that module.
* Remove reference to the shared signatures from `GlobalRegisteredModule`.
This commit removes the stack map registry and instead uses the existing
information from the store's module registry to lookup stack maps.
A trait is now used to pass the lookup context to the runtime, implemented by
`Store` to do the lookup.
With this change, module registration in `Store` is now entirely limited to
inserting the module into the module registry.
This commit moves the shared signature registry out of `Store` and into
`Engine`.
This helps eliminate work that was performed whenever a `Module` was
instantiated into a `Store`.
Now a `Module` is registered with the shared signature registry upon creation,
storing the mapping from the module's signature index space to the shared index
space.
This also refactors the "frame info" registry into a general purpose "module
registry" that is used to look up trap information, signature information, and
(soon) stack map information.
This commit is intended to be a perf improvement for instantiation of
modules with lots of functions. Previously the `lookup_shared_signature`
callback was showing up quite high in profiles as part of instantiation.
As some background, this callback is used to translate from a module's
`SignatureIndex` to a `VMSharedSignatureIndex` which the instance
stores. This callback is called for two reasons, one is to translate all
of the module's own types into `VMSharedSignatureIndex` for the purposes
of `call_indirect` (the translation of that loads from this table to
compare indices). The second reason is that a `VMCallerCheckedAnyfunc`
is prepared for all functions and this embeds a `VMSharedSignatureIndex`
inside of it.
The slow part today is that the lookup callback was called
once-per-function and each lookup involved hashing a full
`WasmFuncType`. Albeit our hash algorithm is still Rust's default
SipHash algorithm which is quite slow, but we also shouldn't need to
re-hash each signature if we see it multiple times anyway.
The fix applied in this commit is to change this lookup callback to an
`enum` where one variant is that there's a table to lookup from. This
table is a `PrimaryMap` which means that lookup is quite fast. The only
thing we need to do is to prepare the table ahead of time. Currently
this happens on the instantiation path because in my measurments the
creation of the table is quite fast compared to the rest of
instantiation. If this becomes an issue, though, we can look into
creating the table as part of `SigRegistry::register_module` and caching
it somewhere (I'm not entirely sure where but I'm sure we can figure it
out).
There's in generally not a ton of efficiency around the `SigRegistry`
type. I'm hoping though that this fixes the next-lowest-hanging-fruit in
terms of performance without complicating the implementation too much. I
tried a few variants and this change seemed like the best balance
between simplicity and still a nice performance gain.
Locally I measured an improvement in instantiation time for a large-ish
module by reducing the time from ~3ms to ~2.6ms per instance.
* Fully support multiple returns in Wasmtime
For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.
The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.
This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.
These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!
Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.
Closes#1178
* Tweak some names and add docs
* "fix" lightbeam compile
* Fix TODO with dummy environ
* Unwind info is a property of the target, not the ABI
* Remove lightbeam unused imports
* Attempt to fix arm64
* Document new ABIs aren't stable
* Fix filetests to use the right target
* Don't always do 64-bit stores with cranelift
This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.
* At least get tests passing on the old backend
* Fix a typo
* Add some filetests with mixed abi calls
* Get `multi` example working
* Fix doctests on old x86 backend
* Add a mixture of wasmtime/system_v tests
This commit splits out a `FiberStack` from `Fiber`, allowing the instance
allocator trait to return `FiberStack` rather than raw stack pointers. This
keeps the stack creation mostly in `wasmtime_fiber`, but now the on-demand
instance allocator can make use of it.
The instance allocators no longer have to return a "not supported" error to
indicate that the store should allocate its own fiber stack.
This includes a bunch of cleanup in the instance allocator to scope stacks to
the new "async" feature in the runtime.
Closes#2708.
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:
* Type contents are now stored separately from a `wasmtime_env::Module`.
Given that modules can freely alias types and have them used all over
the place, it seemed best to have one canonical location to type
storage which everywhere else points to (with indices). A new
`TypeTables` structure is produced during compilation which is shared
amongst all member modules in a wasm blob.
* Instantiation is heavily refactored to account for module linking. The
main gotcha here is that imports are now listed as "initializers". We
have a sort of pseudo-bytecode-interpreter which interprets the
initialization of a module. This is more complicated than just
matching imports at this point because in the module linking proposal
the module, alias, import, and instance sections may all be
interleaved. This means that imports aren't guaranteed to show up at
the beginning of the address space for modules/instances.
Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.
Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.
It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.
cc #2094
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.
The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
After compilation there's actually no need to hold onto the native
signature for a wasm function type, so this commit moves out the
`ir::Signature` value from a `Module` into a separate field that's
deallocated when compilation is finished. This simplifies the
`SignatureRegistry` because it only needs to track wasm functino types
and it also means less work is done for `Func::wrap`.
This commit refactors where trampolines and signature information is
stored within a `Store`, namely moving them from
`wasmtime_runtime::Instance` instead to `Store` itself. The goal here is
to remove an allocation inside of an `Instance` and make them a bit
cheaper to create. Additionally this should open up future possibilities
like not creating duplicate trampolines for signatures already in the
`Store` when using `Func::new`.
There's no need to name each export since each synthetic instance we're
creating only has one export, so let's use the empty string which
doesn't require any allocations.
This commit removes all import resolution handling from the
`wasmtime-jit` crate, instead moving the logic to the `wasmtime` crate.
Previously `wasmtime-jit` had a generic `Resolver` trait and would do
all the import type matching itself, but with the upcoming
module-linking implementation this is going to get much trickier.
The goal of this commit is to centralize all meaty "preparation" logic
for instantiation into one location, probably the `wasmtime` crate
itself. Instantiation will soon involve recursive instantiation and
management of alias definitions as well. Having everything in one
location, especially with access to `Store` so we can persist
instances for safety, will be quite convenient.
Additionally the `Resolver` trait isn't really necessary any more since
imports are, at the lowest level, provided as a list rather than a map
of some kind. More generic resolution functionality is provided via
`Linker` or user layers on top of `Instance::new` itself. This makes
matching up provided items to expected imports much easier as well.
Overall this is largely just moving code around, but most of the code
in the previous `resolve_imports` phase can be deleted since a lot of it
is handled by surrounding pieces of `wasmtime` as well.
This was added long ago at this point to assist with caching, but
caching has moved to a different level such that this wonky second level
of a `Module` isn't necessary. This commit removes the `ModuleLocal`
type to simplify accessors and generally make it easier to work with.
* Refactor where results of compilation are stored
This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.
The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.
Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.
The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".
* Don't clear out fields, just don't store them
Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
Currently `Func::new` will panic if one of the arguments of the function
is a reference type and the `Store` doesn't have reference types
enabled. This happens because cranelift isn't configure to enable stack
maps but the register allocators expects them to exist when reference
types are seen.
The fix here is to always enable reference types in cranelift for our
trampoline generation and `Func::new`. This should hopefully ensure that
trampolines are generated correctly and they'll just not be able to get
hooked up to an `Instance` because validation will prevent reference
types from being used elsewhere.
- Create the ELF image from Compilation
- Create CodeMemory from the ELF image
- Link using ELF image
- Remove creation of GDB JIT images from crates/debug
- Move make_trampoline from compiler.rs
* wasmtime: Implement `global.{get,set}` for externref globals
We use libcalls to implement these -- unlike `table.{get,set}`, for which we
create inline JIT fast paths -- because no known toolchain actually uses
externref globals.
Part of #929
* wasmtime: Enable `{extern,func}ref` globals in the API
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929Fixes#1804
* Refactor how relocs are stored and handled
* refactor CompiledModule::instantiate and link_module
* Refactor DWARF creation: split generation and serialization
* Separate DWARF data transform from instantiation
* rm LinkContext
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
* CompiledModule holds CodeMemory and GdbJitImageRegistration
* Store keeps track of its JIT code
* Makes "jit_int.rs" stuff Send+Sync
* Adds the threads example.
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
* Remove Cranelift's OutOfBounds trap, which is no longer used.
* Change proc_exit to unwind instead of exit the host process.
This implements the semantics in https://github.com/WebAssembly/WASI/pull/235.
Fixes#783.
Fixes#993.
* Fix exit-status tests on Windows.
* Revert the wiggle changes and re-introduce the wasi-common implementations.
* Move `wasi_proc_exit` into the wasmtime-wasi crate.
* Revert the spec_testsuite change.
* Remove the old proc_exit implementations.
* Make `TrapReason` an implementation detail.
* Allow exit status 2 on Windows too.
* Fix a documentation link.
* Really fix a documentation link.
The `wasmtime` crate currently lives in `crates/api` for historical
reasons, because we once called it `wasmtime-api` crate. This creates a
stumbling block for new contributors.
As discussed on Zulip, rename the directory to `crates/wasmtime`.