Commit Graph

10 Commits

Author SHA1 Message Date
Benjamin Bouvier
8a9b1a9025 Implement an incremental compilation cache for Cranelift (#4551)
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. 

After the suggestion of Chris, `Function` has been split into mostly two parts:

- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.

Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:

- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
  - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
  - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.

The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.

A basic fuzz target has been introduced that tries to do the bare minimum:

- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
  - This last check is less efficient and less likely to happen, so probably should be rethought a bit.

Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.

Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. 

Fixes #4155.
2022-08-12 16:47:43 +00:00
Sam Parker
9c43749dfe [RFC] Dynamic Vector Support (#4200)
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.

Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.

The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.

Copyright (c) 2022, Arm Limited.
2022-07-07 12:54:39 -07:00
bjorn3
2fc964ea35 Add serde serialization support for the full clif ir 2021-02-18 11:27:02 +01:00
Alex Crichton
0acd2072c2 Fix doc warnings and link failures (#1948)
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.

Closes #1947
2020-06-30 13:01:49 -05:00
Chris Fallin
e39b4aba1c Fix long-range (non-colocated) aarch64 calls to not use Arm64Call reloc, and fix simplejit to use it.
Previously, every call was lowered on AArch64 to a `call` instruction, which
takes a signed 26-bit PC-relative offset. Including the 2-bit left shift, this
gives a range of +/- 128 MB. Longer-distance offsets would cause an impossible
relocation record to be emitted (or rather, a record that a more sophisticated
linker would fix up by inserting a shim/veneer).

This commit adds a notion of "relocation distance" in the MachInst backends,
and provides this information for every call target and symbol reference. The
intent is that backends on architectures like AArch64, where there are different
offset sizes / addressing strategies to choose from, can either emit a regular
call or a load-64-bit-constant / call-indirect sequence, as necessary. This
avoids the need to implement complex linking behavior.

The MachInst driver code provides this information based on the "colocated" bit
in the CLIF symbol references, which appears to have been designed for this
purpose, or at least a similar one. Combined with the `use_colocated_libcalls`
setting, this allows client code to ensure that library calls can link to
library code at any location in the address space.

Separately, the `simplejit` example did not handle `Arm64Call`; rather than doing
so, it appears all that is necessary to get its tests to pass is to set the
`use_colocated_libcalls` flag to false, to make use of the above change. This
fixes the `libcall_function` unit-test in this crate.
2020-05-05 09:55:12 -07:00
bjorn3
0a1bb3ba6c Add TLS support for ELF and MachO (#1174)
* Add TLS support
* Add binemit and legalize tests
* Spill all caller-saved registers when necessary
2020-02-25 17:50:04 -08:00
Peter Huene
9f506692c2 Fix clippy warnings.
This commit fixes the current set of (stable) clippy warnings in the repo.
2019-10-24 17:20:12 -07:00
Benjamin Bouvier
d7d48d5cc6 Add the dyn keyword before trait objects; 2019-06-24 11:42:26 +02:00
bjorn3
166c11af11 Fix global value colocated printing
It used to print `gv0 = colocated symbol u1:1` while cranelift-reader
expects `gv0 = symbol colocated u1:1`.
2019-02-25 18:01:05 +01:00
lazypassion
747ad3c4c5 moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
moved crates in lib/ to src/, renamed crates, modified some files' text (#660)
2019-01-28 15:56:54 -08:00