This commit removes the binaryen support for fuzzing from wasmtime,
instead switching over to `wasm-smith`. In general it's great to have
what fuzzing we can, but our binaryen support suffers from a few issues:
* The Rust crate, binaryen-sys, seems largely unmaintained at this
point. While we could likely take ownership and/or send PRs to update
the crate it seems like the maintenance is largely on us at this point.
* Currently the binaryen-sys crate doesn't support fuzzing anything
beyond MVP wasm, but we're interested at least in features like bulk
memory and reference types. Additionally we'll also be interested in
features like module-linking. New features would require either
implementation work in binaryen or the binaryen-sys crate to support.
* We have 4-5 fuzz-bugs right now related to timeouts simply in
generating a module for wasmtime to fuzz. One investigation along
these lines in the past revealed a bug in binaryen itself, and in any
case these bugs would otherwise need to get investigated, reported,
and possibly fixed ourselves in upstream binaryen.
Overall I'm not sure at this point if maintaining binaryen fuzzing is
worth it with the advent of `wasm-smith` which has similar goals for
wasm module generation, but is much more readily maintainable on our
end.
Additonally in this commit I've added a fuzzer for wasm-smith's
`SwarmConfig`-based fuzzer which should expand the coverage of tested
modules.
Closes#2163
* Validate modules while translating
This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.
Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.
This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!
* Read function operators until EOF
This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
This commit is intended to update wasmparser to 0.59.0. This primarily
includes bytecodealliance/wasm-tools#40 which is a large update to how
parsing and validation works. The impact on Wasmtime is pretty small at
this time, but over time I'd like to refactor the internals here to lean
more heavily on that upstream wasmparser refactoring.
For now, though, the intention is to get on the train of wasmparser's
latest `main` branch to ensure we get bug fixes and such.
As part of this update a few other crates and such were updated. This is
primarily to handle the new encoding of `ref.is_null` where the type is
not part of the instruction encoding any more.
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
To avoid libfuzzer timeouts, limit the total number of API calls we generate in
the `api_calls` fuzz target. We were already limiting the number of exported
function calls we made, and this extends the limit to all API calls.
We've got some OOM fuzz test cases getting reported, but these aren't
very interesting. The OOMs, after some investigation, are confirmed to
be happening because the test is simply allocating thousands of
instances with massive tables, quickly exceeding the 2GB memory
threshold for fuzzing. This isn't really interesting because this is
expected behavior if you instantiate these sorts of modules.
This commit updates the fuzz test case generator to have a "prediction"
for each module how much memory it will take to instantiate it. This
prediction is then used to avoid instantiating new modules if we predict
that it will exceed our memory limit. The limits here are intentionally
very squishy and imprecise. The goal here is to still generate lots of
interesting test cases, but not ones that simply exhaust memory
trivially.
We only generate *valid* sequences of API calls. To do this, we keep track of
what objects we've already created in earlier API calls via the `Scope` struct.
To generate even-more-pathological sequences of API calls, we use [swarm
testing]:
> In swarm testing, the usual practice of potentially including all features
> in every test case is abandoned. Rather, a large “swarm” of randomly
> generated configurations, each of which omits some features, is used, with
> configurations receiving equal resources.
[swarm testing]: https://www.cs.utah.edu/~regehr/papers/swarm12.pdf
There are more public APIs and instance introspection APIs that we have than
this fuzzer exercises right now. We will need a better generator of valid Wasm
than `wasm-opt -ttf` to really get the most out of those currently-unexercised
APIs, since the Wasm modules generated by `wasm-opt -ttf` don't import and
export a huge variety of things.