Commit Graph

107 Commits

Author SHA1 Message Date
Dan Gohman
ec6755512f Remove maintenance badges from the Cargo.toml files. (#6286)
Several of these badges were out of date, with some crates in wide production
use marked as "experimental". Insted of trying to keep them up to date, just
remove them, since they are [no longer displayed on crates.io].

[no longer displayed on crates.io]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-badges-section
2023-04-26 01:33:09 +00:00
Alphyr
cb150d37ce Update dependencies (#5513) 2023-02-14 19:45:15 +00:00
Alex Crichton
e0b9663e44 Remove some custom error types in Wasmtime (#5347)
* Remove some custom error types in Wasmtime

These types are mostly cumbersome to work with nowadays that `anyhow` is
used everywhere else. This commit removes `InstantiationError` and
`SetupError` in favor of using `anyhow::Error` throughout. This can
eventually culminate in creation of specific errors for embedders to
downcast to but for now this should be general enough.

* Fix Windows build
2022-12-01 14:47:10 -06:00
Alex Crichton
86acb9a438 Use workspace inheritance for some more dependencies (#5349)
Deduplicate some dependency directives through `[workspace.dependencies]`
2022-11-29 22:32:56 +00:00
Dan Gohman
d6d3c49972 Update to cap-std 1.0, io-lifetimes 1.0. (#5330)
The main change here is that io-lifetimes 1.0 switches to use the I/O safety
feature in the standard library rather than providing its own copy.

This also updates to windows-sys 0.42.0 and rustix 0.36.
2022-11-28 15:31:18 -08:00
Harald Hoyer
c74706aa59 feat: implement memory.atomic.notify,wait32,wait64 (#5255)
* feat: implement memory.atomic.notify,wait32,wait64

Added the parking_spot crate, which provides the needed registry for the
operations.

Signed-off-by: Harald Hoyer <harald@profian.com>

* fix: change trap message for HeapMisaligned

The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".

Signed-off-by: Harald Hoyer <harald@profian.com>

* tests: add test for atomic wait on non-shared memory

Signed-off-by: Harald Hoyer <harald@profian.com>

* tests: add tests/spec_testsuite/proposals/threads

without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.

Signed-off-by: Harald Hoyer <harald@profian.com>

* tests: add atomics_notify.wast

checking that notify with 0 waiters returns 0 on shared and non-shared
memory.

Signed-off-by: Harald Hoyer <harald@profian.com>

* tests: add tests for atomic wait on shared memory

- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value

Signed-off-by: Harald Hoyer <harald@profian.com>

* fixup! feat: implement memory.atomic.notify,wait32,wait64

Signed-off-by: Harald Hoyer <harald@profian.com>

* fixup! feat: implement memory.atomic.notify,wait32,wait64

Signed-off-by: Harald Hoyer <harald@profian.com>

Signed-off-by: Harald Hoyer <harald@profian.com>
2022-11-21 18:23:06 +00:00
Alex Crichton
7ec626b898 Use deterministic randomness fuzzing the pooling allocator (#5247)
This commit updates the index allocation performed in the pooling
allocator with a few refactorings:

* With `cfg(fuzzing)` a deterministic rng is now used to improve
  reproducibility of fuzz test cases.
* The `Mutex` was pushed inside of `IndexAllocator`, renamed from
  `PoolingAllocationState`.
* Randomness is now always done through a `SmallRng` stored in the
  `IndexAllocator` instead of using `thread_rng`.
* The `is_empty` method has been removed in favor of an `Option`-based
  return on `alloc`.

This refactoring is additionally intended to encapsulate more
implementation details of `IndexAllocator` to more easily allow for
alternate implementations in the future such as lock-free approaches
(possibly).
2022-11-10 20:53:04 +00:00
Alex Crichton
3535acbf3b Merge pull request from GHSA-wh6w-3828-g9qf
* Unconditionally use `MemoryImageSlot`

This commit removes the internal branching within the pooling instance
allocator to sometimes use a `MemoryImageSlot` and sometimes now.
Instead this is now unconditionally used in all situations on all
platforms. This fixes an issue where the state of a slot could get
corrupted if modules being instantiated switched from having images to
not having an image or vice versa.

The bulk of this commit is the removal of the `memory-init-cow`
compile-time feature in addition to adding Windows support to the
`cow.rs` file.

* Fix compile on Unix

* Add a stricter assertion for static memory bounds

Double-check that when a memory is allocated the configuration required
is satisfied by the pooling allocator.
2022-11-10 11:34:38 -06:00
Christopher Serr
9a8a710d8b Add missing Win32_Foundation feature (#5134)
This is necessary for the `wasmtime-runtime` crate to compile on Windows.
2022-10-26 20:42:31 +00:00
Alex Crichton
7b311004b5 Leverage Cargo's workspace inheritance feature (#4905)
* Leverage Cargo's workspace inheritance feature

This commit is an attempt to reduce the complexity of the Cargo
manifests in this repository with Cargo's workspace-inheritance feature
becoming stable in Rust 1.64.0. This feature allows specifying fields in
the root workspace `Cargo.toml` which are then reused throughout the
workspace. For example this PR shares definitions such as:

* All of the Wasmtime-family of crates now use `version.workspace =
  true` to have a single location which defines the version number.
* All crates use `edition.workspace = true` to have one default edition
  for the entire workspace.
* Common dependencies are listed in `[workspace.dependencies]` to avoid
  typing the same version number in a lot of different places (e.g. the
  `wasmparser = "0.89.0"` is now in just one spot.

Currently the workspace-inheritance feature doesn't allow having two
different versions to inherit, so all of the Cranelift-family of crates
still manually specify their version. The inter-crate dependencies,
however, are shared amongst the root workspace.

This feature can be seen as a method of "preprocessing" of sorts for
Cargo manifests. This will help us develop Wasmtime but shouldn't have
any actual impact on the published artifacts -- everything's dependency
lists are still the same.

* Fix wasi-crypto tests
2022-09-26 11:30:01 -05:00
Dan Gohman
6f50ddaaf2 Update to cap-std 0.26. (#4940)
* Update to cap-std 0.26.

This is primarily to pull in bytecodealliance/cap-std#271, the fix for #4936,
compilation on Rust nightly on Windows.

It also updates to rustix 0.35.10, to pull in bytecodealliance/rustix#403,
the fix for bytecodealliance/rustix#402, compilation on newer versions of
the libc crate, which changed a public function from `unsafe` to safe.

Fixes #4936.

* Update the system-interface audit for 0.23.

* Update the libc supply-chain config version.
2022-09-21 14:56:38 -05:00
Alex Crichton
65930640f8 Bump Wasmtime to 2.0.0 (#4874)
This commit replaces #4869 and represents the actual version bump that
should have happened had I remembered to bump the in-tree version of
Wasmtime to 1.0.0 prior to the branch-cut date. Alas!
2022-09-06 13:49:56 -05:00
Alex Crichton
650979ae40 Implement strings in adapter modules (#4623)
* Implement strings in adapter modules

This commit is a hefty addition to Wasmtime's support for the component
model. This implements the final remaining type (in the current type
hierarchy) unimplemented in adapter module trampolines: strings. Strings
are the most complicated type to implement in adapter trampolines
because they are highly structured chunks of data in memory (according
to specific encodings). Additionally each lift/lower operation can
choose its own encoding for strings meaning that Wasmtime, the host, may
have to convert between any pairwise ordering of string encodings.

The `CanonicalABI.md` in the component-model repo in general specifies
all the fiddly bits of string encoding so there's not a ton of wiggle
room for Wasmtime to get creative. This PR largely "just" implements
that. The high-level architecture of this implementation is:

* Fused adapters are first identified to determine src/dst string
  encodings. This statically fixes what transcoding operation is being
  performed.

* The generated adapter will be responsible for managing calls to
  `realloc` and performing bounds checks. The adapter itself does not
  perform memory copies or validation of string contents, however.
  Instead each transcoding operation is modeled as an imported function
  into the adapter module.  This means that the adapter module
  dynamically, during compile time, determines what string transcoders
  are needed. Note that an imported transcoder is not only parameterized
  over the transcoding operation but additionally which memory is the
  source and which is the destination.

* The imported core wasm functions are modeled as a new
  `CoreDef::Transcoder` structure. These transcoders end up being small
  Cranelift-compiled trampolines. The Cranelift-compiled trampoline will
  load the actual base pointer of memory and add it to the relative
  pointers passed as function arguments. This trampoline then calls a
  transcoder "libcall" which enters Rust-defined functions for actual
  transcoding operations.

* Each possible transcoding operation is implemented in Rust with a
  unique name and a unique signature depending on the needs of the
  transcoder. I've tried to document inline what each transcoder does.

This means that the `Module::translate_string` in adapter modules is by
far the largest translation method. The main reason for this is due to
the management around calling the imported transcoder functions in the
face of validating string pointer/lengths and performing the dance of
`realloc`-vs-transcode at the right time. I've tried to ensure that each
individual case in transcoding is documented well enough to understand
what's going on as well.

Additionally in this PR is a full implementation in the host for the
`latin1+utf16` encoding which means that both lifting and lowering host
strings now works with this encoding.

Currently the implementation of each transcoder function is likely far
from optimal. Where possible I've leaned on the standard library itself
and for latin1-related things I'm leaning on the `encoding_rs` crate. I
initially tried to implement everything with `encoding_rs` but was
unable to uniformly do so easily. For now I settled on trying to get a
known-correct (even in the face of endianness) implementation for all of
these transcoders. If an when performance becomes an issue it should be
possible to implement more optimized versions of each of these
transcoding operations.

Testing this commit has been somewhat difficult and my general plan,
like with the `(list T)` type, is to rely heavily on fuzzing to cover
the various cases here. In this PR though I've added a simple test that
pushes some statically known strings through all the pairs of encodings
between source and destination. I've attempted to pick "interesting"
strings that one way or another stress the various paths in each
transcoding operation to ideally get full branch coverage there.
Additionally a suite of "negative" tests have also been added to ensure
that validity of encoding is actually checked.

* Fix a temporarily commented out case

* Fix wasmtime-runtime tests

* Update deny.toml configuration

* Add `BSD-3-Clause` for the `encoding_rs` crate
* Remove some unused licenses

* Add an exemption for `encoding_rs` for now

* Split up the `translate_string` method

Move out all the closures and package up captured state into smaller
lists of arguments.

* Test out-of-bounds for zero-length strings
2022-08-08 16:01:57 +00:00
wasmtime-publish
412fa04911 Bump Wasmtime to 0.41.0 (#4620)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-08-04 20:02:19 -05:00
Nick Fitzgerald
46782b18c2 wasmtime: Implement fast Wasm stack walking (#4431)
* Always preserve frame pointers in Wasmtime

This allows us to efficiently and simply capture Wasm stacks without maintaining
and synchronizing any safety-critical side tables between the compiler and the
runtime.

* wasmtime: Implement fast Wasm stack walking

Why do we want Wasm stack walking to be fast? Because we capture stacks whenever
there is a trap and traps actually happen fairly frequently with short-lived
programs and WASI's `exit`.

Previously, we would rely on generating the system unwind info (e.g.
`.eh_frame`) and using the system unwinder (via the `backtrace`crate) to walk
the full stack and filter out any non-Wasm stack frames. This can,
unfortunately, be slow for two primary reasons:

1. The system unwinder is doing `O(all-kinds-of-frames)` work rather than
`O(wasm-frames)` work.

2. System unwind info and the system unwinder need to be much more general than
a purpose-built stack walker for Wasm needs to be. It has to handle any kind of
stack frame that any compiler might emit where as our Wasm frames are emitted by
Cranelift and always have frame pointers. This translates into implementation
complexity and general overhead. There can also be unnecessary-for-our-use-cases
global synchronization and locks involved, further slowing down stack walking in
the presence of multiple threads trying to capture stacks in parallel.

This commit introduces a purpose-built stack walker for traversing just our Wasm
frames. To find all the sequences of Wasm-to-Wasm stack frames, and ignore
non-Wasm stack frames, we keep a linked list of `(entry stack pointer, exit
frame pointer)` pairs. This linked list is maintained via Wasm-to-host and
host-to-Wasm trampolines. Within a sequence of Wasm-to-Wasm calls, we can use
frame pointers (which Cranelift preserves) to find the next older Wasm frame on
the stack, and we keep doing this until we reach the entry stack pointer,
meaning that the next older frame will be a host frame.

The trampolines need to avoid a couple stumbling blocks. First, they need to be
compiled ahead of time, since we may not have access to a compiler at
runtime (e.g. if the `cranelift` feature is disabled) but still want to be able
to call functions that have already been compiled and get stack traces for those
functions. Usually this means we would compile the appropriate trampolines
inside `Module::new` and the compiled module object would hold the
trampolines. However, we *also* need to support calling host functions that are
wrapped into `wasmtime::Func`s and there doesn't exist *any* ahead-of-time
compiled module object to hold the appropriate trampolines:

```rust
// Define a host function.
let func_type = wasmtime::FuncType::new(
    vec![wasmtime::ValType::I32],
    vec![wasmtime::ValType::I32],
);
let func = Func::new(&mut store, func_type, |_, params, results| {
    // ...
    Ok(())
});

// Call that host function.
let mut results = vec![wasmtime::Val::I32(0)];
func.call(&[wasmtime::Val::I32(0)], &mut results)?;
```

Therefore, we define one host-to-Wasm trampoline and one Wasm-to-host trampoline
in assembly that work for all Wasm and host function signatures. These
trampolines are careful to only use volatile registers, avoid touching any
register that is an argument in the calling convention ABI, and tail call to the
target callee function. This allows forwarding any set of arguments and any
returns to and from the callee, while also allowing us to maintain our linked
list of Wasm stack and frame pointers before transferring control to the
callee. These trampolines are not used in Wasm-to-Wasm calls, only when crossing
the host-Wasm boundary, so they do not impose overhead on regular calls. (And if
using one trampoline for all host-Wasm boundary crossing ever breaks branch
prediction enough in the CPU to become any kind of bottleneck, we can do fun
things like have multiple copies of the same trampoline and choose a random copy
for each function, sharding the functions across branch predictor entries.)

Finally, this commit also ends the use of a synthetic `Module` and allocating a
stubbed out `VMContext` for host functions. Instead, we define a
`VMHostFuncContext` with its own magic value, similar to `VMComponentContext`,
specifically for host functions.

<h2>Benchmarks</h2>

<h3>Traps and Stack Traces</h3>

Large improvements to taking stack traces on traps, ranging from shaving off 64%
to 99.95% of the time it used to take.

<details>

```
multi-threaded-traps/0  time:   [2.5686 us 2.5808 us 2.5934 us]
                        thrpt:  [0.0000  elem/s 0.0000  elem/s 0.0000  elem/s]
                 change:
                        time:   [-85.419% -85.153% -84.869%] (p = 0.00 < 0.05)
                        thrpt:  [+560.90% +573.56% +585.84%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
multi-threaded-traps/1  time:   [2.9021 us 2.9167 us 2.9322 us]
                        thrpt:  [341.04 Kelem/s 342.86 Kelem/s 344.58 Kelem/s]
                 change:
                        time:   [-91.455% -91.294% -91.096%] (p = 0.00 < 0.05)
                        thrpt:  [+1023.1% +1048.6% +1070.3%]
                        Performance has improved.
Found 6 outliers among 100 measurements (6.00%)
  1 (1.00%) high mild
  5 (5.00%) high severe
multi-threaded-traps/2  time:   [2.9996 us 3.0145 us 3.0295 us]
                        thrpt:  [660.18 Kelem/s 663.47 Kelem/s 666.76 Kelem/s]
                 change:
                        time:   [-94.040% -93.910% -93.762%] (p = 0.00 < 0.05)
                        thrpt:  [+1503.1% +1542.0% +1578.0%]
                        Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
  5 (5.00%) high severe
multi-threaded-traps/4  time:   [5.5768 us 5.6052 us 5.6364 us]
                        thrpt:  [709.68 Kelem/s 713.63 Kelem/s 717.25 Kelem/s]
                 change:
                        time:   [-93.193% -93.121% -93.052%] (p = 0.00 < 0.05)
                        thrpt:  [+1339.2% +1353.6% +1369.1%]
                        Performance has improved.
multi-threaded-traps/8  time:   [8.6408 us 9.1212 us 9.5438 us]
                        thrpt:  [838.24 Kelem/s 877.08 Kelem/s 925.84 Kelem/s]
                 change:
                        time:   [-94.754% -94.473% -94.202%] (p = 0.00 < 0.05)
                        thrpt:  [+1624.7% +1709.2% +1806.1%]
                        Performance has improved.
multi-threaded-traps/16 time:   [10.152 us 10.840 us 11.545 us]
                        thrpt:  [1.3858 Melem/s 1.4760 Melem/s 1.5761 Melem/s]
                 change:
                        time:   [-97.042% -96.823% -96.577%] (p = 0.00 < 0.05)
                        thrpt:  [+2821.5% +3048.1% +3281.1%]
                        Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
  1 (1.00%) high mild

many-modules-registered-traps/1
                        time:   [2.6278 us 2.6361 us 2.6447 us]
                        thrpt:  [378.11 Kelem/s 379.35 Kelem/s 380.55 Kelem/s]
                 change:
                        time:   [-85.311% -85.108% -84.909%] (p = 0.00 < 0.05)
                        thrpt:  [+562.65% +571.51% +580.76%]
                        Performance has improved.
Found 9 outliers among 100 measurements (9.00%)
  3 (3.00%) high mild
  6 (6.00%) high severe
many-modules-registered-traps/8
                        time:   [2.6294 us 2.6460 us 2.6623 us]
                        thrpt:  [3.0049 Melem/s 3.0235 Melem/s 3.0425 Melem/s]
                 change:
                        time:   [-85.895% -85.485% -85.022%] (p = 0.00 < 0.05)
                        thrpt:  [+567.63% +588.95% +608.95%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  3 (3.00%) high mild
  5 (5.00%) high severe
many-modules-registered-traps/64
                        time:   [2.6218 us 2.6329 us 2.6452 us]
                        thrpt:  [24.195 Melem/s 24.308 Melem/s 24.411 Melem/s]
                 change:
                        time:   [-93.629% -93.551% -93.470%] (p = 0.00 < 0.05)
                        thrpt:  [+1431.4% +1450.6% +1469.5%]
                        Performance has improved.
Found 3 outliers among 100 measurements (3.00%)
  3 (3.00%) high mild
many-modules-registered-traps/512
                        time:   [2.6569 us 2.6737 us 2.6923 us]
                        thrpt:  [190.17 Melem/s 191.50 Melem/s 192.71 Melem/s]
                 change:
                        time:   [-99.277% -99.268% -99.260%] (p = 0.00 < 0.05)
                        thrpt:  [+13417% +13566% +13731%]
                        Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
  4 (4.00%) high mild
many-modules-registered-traps/4096
                        time:   [2.7258 us 2.7390 us 2.7535 us]
                        thrpt:  [1.4876 Gelem/s 1.4955 Gelem/s 1.5027 Gelem/s]
                 change:
                        time:   [-99.956% -99.955% -99.955%] (p = 0.00 < 0.05)
                        thrpt:  [+221417% +223380% +224881%]
                        Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
  1 (1.00%) high mild
  1 (1.00%) high severe

many-stack-frames-traps/1
                        time:   [1.4658 us 1.4719 us 1.4784 us]
                        thrpt:  [676.39 Kelem/s 679.38 Kelem/s 682.21 Kelem/s]
                 change:
                        time:   [-90.368% -89.947% -89.586%] (p = 0.00 < 0.05)
                        thrpt:  [+860.23% +894.72% +938.21%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  5 (5.00%) high mild
  3 (3.00%) high severe
many-stack-frames-traps/8
                        time:   [2.4772 us 2.4870 us 2.4973 us]
                        thrpt:  [3.2034 Melem/s 3.2167 Melem/s 3.2294 Melem/s]
                 change:
                        time:   [-85.550% -85.370% -85.199%] (p = 0.00 < 0.05)
                        thrpt:  [+575.65% +583.51% +592.03%]
                        Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
many-stack-frames-traps/64
                        time:   [10.109 us 10.171 us 10.236 us]
                        thrpt:  [6.2525 Melem/s 6.2925 Melem/s 6.3309 Melem/s]
                 change:
                        time:   [-78.144% -77.797% -77.336%] (p = 0.00 < 0.05)
                        thrpt:  [+341.22% +350.38% +357.55%]
                        Performance has improved.
Found 7 outliers among 100 measurements (7.00%)
  5 (5.00%) high mild
  2 (2.00%) high severe
many-stack-frames-traps/512
                        time:   [126.16 us 126.54 us 126.96 us]
                        thrpt:  [4.0329 Melem/s 4.0461 Melem/s 4.0583 Melem/s]
                 change:
                        time:   [-65.364% -64.933% -64.453%] (p = 0.00 < 0.05)
                        thrpt:  [+181.32% +185.17% +188.71%]
                        Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
  4 (4.00%) high severe
```

</details>

<h3>Calls</h3>

There is, however, a small regression in raw Wasm-to-host and host-to-Wasm call
performance due the new trampolines. It seems to be on the order of about 2-10
nanoseconds per call, depending on the benchmark.

I believe this regression is ultimately acceptable because

1. this overhead will be vastly dominated by whatever work a non-nop callee
actually does,

2. we will need these trampolines, or something like them, when implementing the
Wasm exceptions proposal to do things like translate Wasm's exceptions into
Rust's `Result`s,

3. and because the performance improvements to trapping and capturing stack
traces are of such a larger magnitude than this call regressions.

<details>

```
sync/no-hook/host-to-wasm - typed - nop
                        time:   [28.683 ns 28.757 ns 28.844 ns]
                        change: [+16.472% +17.183% +17.904%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  1 (1.00%) low mild
  4 (4.00%) high mild
  5 (5.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop
                        time:   [42.515 ns 42.652 ns 42.841 ns]
                        change: [+12.371% +14.614% +17.462%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  1 (1.00%) high mild
  10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop
                        time:   [33.936 ns 34.052 ns 34.179 ns]
                        change: [+25.478% +26.938% +28.369%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  7 (7.00%) high mild
  2 (2.00%) high severe
sync/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [34.290 ns 34.388 ns 34.502 ns]
                        change: [+40.802% +42.706% +44.526%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  5 (5.00%) high mild
  8 (8.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [62.546 ns 62.721 ns 62.919 ns]
                        change: [+2.5014% +3.6319% +4.8078%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  2 (2.00%) high mild
  10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop-params-and-results
                        time:   [42.609 ns 42.710 ns 42.831 ns]
                        change: [+20.966% +22.282% +23.475%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  4 (4.00%) high mild
  7 (7.00%) high severe

sync/hook-sync/host-to-wasm - typed - nop
                        time:   [29.546 ns 29.675 ns 29.818 ns]
                        change: [+20.693% +21.794% +22.836%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 5 outliers among 100 measurements (5.00%)
  3 (3.00%) high mild
  2 (2.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop
                        time:   [45.448 ns 45.699 ns 45.961 ns]
                        change: [+17.204% +18.514% +19.590%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop
                        time:   [34.334 ns 34.437 ns 34.558 ns]
                        change: [+23.225% +24.477% +25.886%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  5 (5.00%) high mild
  7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [36.594 ns 36.763 ns 36.974 ns]
                        change: [+41.967% +47.261% +52.086%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  3 (3.00%) high mild
  9 (9.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [63.541 ns 63.831 ns 64.194 ns]
                        change: [-4.4337% -0.6855% +2.7134%] (p = 0.73 > 0.05)
                        No change in performance detected.
Found 8 outliers among 100 measurements (8.00%)
  6 (6.00%) high mild
  2 (2.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop-params-and-results
                        time:   [43.968 ns 44.169 ns 44.437 ns]
                        change: [+18.772% +21.802% +24.623%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  3 (3.00%) high mild
  12 (12.00%) high severe

async/no-hook/host-to-wasm - typed - nop
                        time:   [4.9612 us 4.9743 us 4.9889 us]
                        change: [+9.9493% +11.911% +13.502%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  6 (6.00%) high mild
  4 (4.00%) high severe
async/no-hook/host-to-wasm - untyped - nop
                        time:   [5.0030 us 5.0211 us 5.0439 us]
                        change: [+10.841% +11.873% +12.977%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  3 (3.00%) high mild
  7 (7.00%) high severe
async/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [4.9273 us 4.9468 us 4.9700 us]
                        change: [+4.7381% +6.8445% +8.8238%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
async/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [5.1151 us 5.1338 us 5.1555 us]
                        change: [+9.5335% +11.290% +13.044%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe

async/hook-sync/host-to-wasm - typed - nop
                        time:   [4.9330 us 4.9394 us 4.9467 us]
                        change: [+10.046% +11.038% +12.035%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  5 (5.00%) high mild
  7 (7.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop
                        time:   [5.0073 us 5.0183 us 5.0310 us]
                        change: [+9.3828% +10.565% +11.752%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  3 (3.00%) high mild
  5 (5.00%) high severe
async/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [4.9610 us 4.9839 us 5.0097 us]
                        change: [+9.0857% +11.513% +14.359%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  7 (7.00%) high mild
  6 (6.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [5.0995 us 5.1272 us 5.1617 us]
                        change: [+9.3600% +11.506% +13.809%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  6 (6.00%) high mild
  4 (4.00%) high severe

async-pool/no-hook/host-to-wasm - typed - nop
                        time:   [2.4242 us 2.4316 us 2.4396 us]
                        change: [+7.8756% +8.8803% +9.8346%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  5 (5.00%) high mild
  3 (3.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop
                        time:   [2.5102 us 2.5155 us 2.5210 us]
                        change: [+12.130% +13.194% +14.270%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  4 (4.00%) high mild
  8 (8.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop-params-and-results
                        time:   [2.4203 us 2.4310 us 2.4440 us]
                        change: [+4.0380% +6.3623% +8.7534%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop-params-and-results
                        time:   [2.5501 us 2.5593 us 2.5700 us]
                        change: [+8.8802% +10.976% +12.937%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  5 (5.00%) high mild
  11 (11.00%) high severe

async-pool/hook-sync/host-to-wasm - typed - nop
                        time:   [2.4135 us 2.4190 us 2.4254 us]
                        change: [+8.3640% +9.3774% +10.435%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  6 (6.00%) high mild
  5 (5.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop
                        time:   [2.5172 us 2.5248 us 2.5357 us]
                        change: [+11.543% +12.750% +13.982%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  1 (1.00%) high mild
  7 (7.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop-params-and-results
                        time:   [2.4214 us 2.4353 us 2.4532 us]
                        change: [+1.5158% +5.0872% +8.6765%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  2 (2.00%) high mild
  13 (13.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop-params-and-results
                        time:   [2.5499 us 2.5607 us 2.5748 us]
                        change: [+10.146% +12.459% +14.919%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe

sync/no-hook/wasm-to-host - nop - typed
                        time:   [6.6135 ns 6.6288 ns 6.6452 ns]
                        change: [+37.927% +38.837% +39.869%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  2 (2.00%) high mild
  5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.930 ns 15.993 ns 16.067 ns]
                        change: [+3.9583% +5.6286% +7.2430%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
  11 (11.00%) high mild
  1 (1.00%) high severe
sync/no-hook/wasm-to-host - nop - untyped
                        time:   [20.596 ns 20.640 ns 20.690 ns]
                        change: [+4.3293% +5.2047% +6.0935%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  5 (5.00%) high mild
  5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.659 ns 42.882 ns 43.159 ns]
                        change: [-2.1466% -0.5079% +1.2554%] (p = 0.58 > 0.05)
                        No change in performance detected.
Found 15 outliers among 100 measurements (15.00%)
  1 (1.00%) high mild
  14 (14.00%) high severe
sync/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.671 ns 10.691 ns 10.713 ns]
                        change: [+83.911% +87.620% +92.062%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.136 ns 11.190 ns 11.263 ns]
                        change: [-29.719% -28.446% -27.029%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe

sync/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7964 ns 6.8087 ns 6.8226 ns]
                        change: [+21.531% +24.206% +27.331%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  4 (4.00%) high mild
  10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.865 ns 15.921 ns 15.985 ns]
                        change: [+4.8466% +6.3330% +7.8317%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe
sync/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.505 ns 21.587 ns 21.677 ns]
                        change: [+8.0908% +9.1943% +10.254%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  4 (4.00%) high mild
  4 (4.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [44.018 ns 44.128 ns 44.261 ns]
                        change: [-1.4671% -0.0458% +1.2443%] (p = 0.94 > 0.05)
                        No change in performance detected.
Found 14 outliers among 100 measurements (14.00%)
  5 (5.00%) high mild
  9 (9.00%) high severe
sync/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.264 ns 11.326 ns 11.387 ns]
                        change: [+80.225% +81.659% +83.068%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 6 outliers among 100 measurements (6.00%)
  3 (3.00%) high mild
  3 (3.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.816 ns 11.865 ns 11.920 ns]
                        change: [-29.152% -28.040% -26.957%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  8 (8.00%) high mild
  6 (6.00%) high severe

async/no-hook/wasm-to-host - nop - typed
                        time:   [6.6221 ns 6.6385 ns 6.6569 ns]
                        change: [+43.618% +44.755% +45.965%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  6 (6.00%) high mild
  7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.884 ns 15.929 ns 15.983 ns]
                        change: [+3.5987% +5.2053% +6.7846%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  3 (3.00%) high mild
  13 (13.00%) high severe
async/no-hook/wasm-to-host - nop - untyped
                        time:   [20.615 ns 20.702 ns 20.821 ns]
                        change: [+6.9799% +8.1212% +9.2819%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  2 (2.00%) high mild
  8 (8.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [41.956 ns 42.207 ns 42.521 ns]
                        change: [-4.3057% -2.7730% -1.2428%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  3 (3.00%) high mild
  11 (11.00%) high severe
async/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.440 ns 10.474 ns 10.513 ns]
                        change: [+83.959% +85.826% +87.541%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  5 (5.00%) high mild
  6 (6.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.476 ns 11.512 ns 11.554 ns]
                        change: [-29.857% -28.383% -26.978%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
  1 (1.00%) low mild
  6 (6.00%) high mild
  5 (5.00%) high severe
async/no-hook/wasm-to-host - nop - async-typed
                        time:   [26.427 ns 26.478 ns 26.532 ns]
                        change: [+6.5730% +7.4676% +8.3983%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - async-typed
                        time:   [28.557 ns 28.693 ns 28.880 ns]
                        change: [+1.9099% +3.7332% +5.9731%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
  1 (1.00%) high mild
  14 (14.00%) high severe

async/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7488 ns 6.7630 ns 6.7784 ns]
                        change: [+19.935% +22.080% +23.683%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  4 (4.00%) high mild
  5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.928 ns 16.031 ns 16.149 ns]
                        change: [+5.5188% +6.9567% +8.3839%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  9 (9.00%) high mild
  2 (2.00%) high severe
async/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.930 ns 22.114 ns 22.296 ns]
                        change: [+4.6674% +7.7588% +10.375%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 4 outliers among 100 measurements (4.00%)
  3 (3.00%) high mild
  1 (1.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.684 ns 42.858 ns 43.081 ns]
                        change: [-5.2957% -3.4693% -1.6217%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
  2 (2.00%) high mild
  12 (12.00%) high severe
async/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.026 ns 11.053 ns 11.086 ns]
                        change: [+70.751% +72.378% +73.961%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
  5 (5.00%) high mild
  5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.840 ns 11.900 ns 11.982 ns]
                        change: [-27.977% -26.584% -24.887%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async/hook-sync/wasm-to-host - nop - async-typed
                        time:   [27.601 ns 27.709 ns 27.882 ns]
                        change: [+8.1781% +9.1102% +10.030%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  2 (2.00%) low mild
  3 (3.00%) high mild
  6 (6.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - async-typed
                        time:   [28.955 ns 29.174 ns 29.413 ns]
                        change: [+1.1226% +3.0366% +5.1126%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
  7 (7.00%) high mild
  6 (6.00%) high severe

async-pool/no-hook/wasm-to-host - nop - typed
                        time:   [6.5626 ns 6.5733 ns 6.5851 ns]
                        change: [+40.561% +42.307% +44.514%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  5 (5.00%) high mild
  4 (4.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - typed
                        time:   [15.820 ns 15.886 ns 15.969 ns]
                        change: [+4.1044% +5.7928% +7.7122%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 17 outliers among 100 measurements (17.00%)
  4 (4.00%) high mild
  13 (13.00%) high severe
async-pool/no-hook/wasm-to-host - nop - untyped
                        time:   [20.481 ns 20.521 ns 20.566 ns]
                        change: [+6.7962% +7.6950% +8.7612%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  6 (6.00%) high mild
  5 (5.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - untyped
                        time:   [41.834 ns 41.998 ns 42.189 ns]
                        change: [-3.8185% -2.2687% -0.7541%] (p = 0.01 < 0.05)
                        Change within noise threshold.
Found 13 outliers among 100 measurements (13.00%)
  3 (3.00%) high mild
  10 (10.00%) high severe
async-pool/no-hook/wasm-to-host - nop - unchecked
                        time:   [10.353 ns 10.380 ns 10.414 ns]
                        change: [+82.042% +84.591% +87.205%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  4 (4.00%) high mild
  3 (3.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.123 ns 11.168 ns 11.228 ns]
                        change: [-30.813% -29.285% -27.874%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
  11 (11.00%) high mild
  1 (1.00%) high severe
async-pool/no-hook/wasm-to-host - nop - async-typed
                        time:   [27.442 ns 27.528 ns 27.638 ns]
                        change: [+7.5215% +9.9795% +12.266%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - async-typed
                        time:   [29.014 ns 29.148 ns 29.312 ns]
                        change: [+2.0227% +3.4722% +4.9047%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
  6 (6.00%) high mild
  1 (1.00%) high severe

async-pool/hook-sync/wasm-to-host - nop - typed
                        time:   [6.7916 ns 6.8116 ns 6.8325 ns]
                        change: [+20.937% +22.050% +23.281%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
  5 (5.00%) high mild
  6 (6.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - typed
                        time:   [15.917 ns 15.975 ns 16.051 ns]
                        change: [+4.6404% +6.4217% +8.3075%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  5 (5.00%) high mild
  11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - untyped
                        time:   [21.558 ns 21.612 ns 21.679 ns]
                        change: [+8.1158% +9.1409% +10.217%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
  2 (2.00%) high mild
  7 (7.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - untyped
                        time:   [42.475 ns 42.614 ns 42.775 ns]
                        change: [-6.3613% -4.4709% -2.7647%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
  3 (3.00%) high mild
  15 (15.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - unchecked
                        time:   [11.150 ns 11.195 ns 11.247 ns]
                        change: [+74.424% +77.056% +79.811%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
  3 (3.00%) high mild
  11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - unchecked
                        time:   [11.639 ns 11.695 ns 11.760 ns]
                        change: [-30.212% -29.023% -27.954%] (p = 0.00 < 0.05)
                        Performance has improved.
Found 15 outliers among 100 measurements (15.00%)
  7 (7.00%) high mild
  8 (8.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - async-typed
                        time:   [27.480 ns 27.712 ns 27.984 ns]
                        change: [+2.9764% +6.5061% +9.8914%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
  6 (6.00%) high mild
  2 (2.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - async-typed
                        time:   [29.218 ns 29.380 ns 29.600 ns]
                        change: [+5.2283% +7.7247% +10.822%] (p = 0.00 < 0.05)
                        Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
  2 (2.00%) high mild
  14 (14.00%) high severe
```

</details>

* Add s390x support for frame pointer-based stack walking

* wasmtime: Allow `Caller::get_export` to get all exports

* fuzzing: Add a fuzz target to check that our stack traces are correct

We generate Wasm modules that keep track of their own stack as they call and
return between functions, and then we periodically check that if the host
captures a backtrace, it matches what the Wasm module has recorded.

* Remove VM offsets for `VMHostFuncContext` since it isn't used by JIT code

* Add doc comment with stack walking implementation notes

* Document the extra state that can be passed to `wasmtime_runtime::Backtrace` methods

* Add extensive comments for stack walking function

* Factor architecture-specific bits of stack walking out into modules

* Initialize store-related fields in a vmctx to null when there is no store yet

Rather than leaving them as uninitialized data.

* Use `set_callee` instead of manually setting the vmctx field

* Use a more informative compile error message for unsupported architectures

* Document unsafety of `prepare_host_to_wasm_trampoline`

* Use `bti c` instead of `hint #34` in inline aarch64 assembly

* Remove outdated TODO comment

* Remove setting of `last_wasm_exit_fp` in `set_jit_trap`

This is no longer needed as the value is plumbed through to the backtrace code
directly now.

* Only set the stack limit once, in the face of re-entrancy into Wasm

* Add comments for s390x-specific stack walking bits

* Use the helper macro for all libcalls

If we forget to use it, and then trigger a GC from the libcall, that means we
could miss stack frames when walking the stack, fail to find live GC refs, and
then get use after free bugs. Much less risky to always use the helper macro
that takes care of all of that for us.

* Use the `asm_sym!` macro in Wasm-to-libcall trampolines

This macro handles the macOS-specific underscore prefix stuff for us.

* wasmtime: add size and align to `externref` assertion error message

* Extend the `stacks` fuzzer to have host frames in between Wasm frames

This way we get one or more contiguous sequences of Wasm frames on the stack,
instead of exactly one.

* Add documentation for aarch64-specific backtrace helpers

* Clarify that we only support little-endian aarch64 in trampoline comment

* Use `.machine z13` in s390x assembly file

Since apparently our CI machines have pretty old assemblers that don't have
`.machine z14`. This should be fine though since these trampolines don't make
use of anything that is introduced in z14.

* Fix aarch64 build

* Fix macOS build

* Document the `asm_sym!` macro

* Add windows support to the `wasmtime-asm-macros` crate

* Add windows support to host<--->Wasm trampolines

* Fix trap handler build on windows

* Run `rustfmt` on s390x trampoline source file

* Temporarily disable some assertions about a trap's backtrace in the component model tests

Follow up to re-enable this and fix the associated issue:
https://github.com/bytecodealliance/wasmtime/issues/4535

* Refactor libcall definitions with less macros

This refactors the `libcall!` macro to use the
`foreach_builtin_function!` macro to define all of the trampolines.
Additionally the macro surrounding each libcall itself is no longer
necessary and helps avoid too many macros.

* Use `VMOpaqueContext::from_vm_host_func_context` in `VMHostFuncContext::new`

* Move `backtrace` module to be submodule of `traphandlers`

This avoids making some things `pub(crate)` in `traphandlers` that really
shouldn't be.

* Fix macOS aarch64 build

* Use "i64" instead of "word" in aarch64-specific file

* Save/restore entry SP and exit FP/return pointer in the face of panicking imported host functions

Also clean up assertions surrounding our saved entry/exit registers.

* Put "typed" vs "untyped" in the same position of call benchmark names

Regardless if we are doing wasm-to-host or host-to-wasm

* Fix stacks test case generator build for new `wasm-encoder`

* Fix build for s390x

* Expand libcalls in s390x asm

* Disable more parts of component tests now that backtrace assertions are a bit tighter

* Remove assertion that can maybe fail on s390x

Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-07-28 15:46:14 -07:00
Alex Crichton
1321c234e5 Remove dependency on more-asserts (#4408)
* Remove dependency on `more-asserts`

In my recent adventures to do a bit of gardening on our dependencies I
noticed that there's a new major version for the `more-asserts` crate.
Instead of updating to this though I've opted to instead remove the
dependency since I don't think we heavily lean on this crate and
otherwise one-off prints are probably sufficient to avoid the need for
pulling in a whole crate for this.

* Remove exemption for `more-asserts`
2022-07-26 16:47:33 +00:00
Alex Crichton
601e8f3094 Remove dependency on the region crate (#4407)
This commit removes Wasmtime's dependency on the `region` crate. The
motivation for this came about when I was updating dependencies and saw
that `region` had a new major version at 3.0.0 as opposed to our
currently used 2.3 track. In reviewing the use cases of `region` within
Wasmtime I found two trends in particular which motivated this commit:

* Some unix-specific areas of `wasmtime_runtime` use
  `rustix::mm::mprotect` instead of `region::protect` already. This
  means that the usage of `region::protect` for changing virtual memory
  protections was already inconsistent.

* Many uses of `region::protect` were already in unix-specific regions
  which could make use of `rustix`.

Overall I opted to remove the dependency on the `region` crate to avoid
chasing its versions over time. Unix-specific changes of protections
were easily changed to `rustix::mm::mprotect`. There were two locations
where a windows/unix split is now required and I subjectively ruled
"that seems ok". Finally removing `region` also meant that the "what is
the current page size" query needed to be inlined into
`wasmtime_runtime`, which I have also subjectively ruled "that seems
fine".

Finally one final refactoring here was that the `unix.rs` and `linux.rs`
split for the pooling allocator was merged. These two files already only
differed in one function so I slapped a `cfg_if!` in there to help
reduce the duplication.
2022-07-07 21:28:25 +00:00
wasmtime-publish
7c428bbd62 Bump Wasmtime to 0.40.0 (#4378)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-07-05 09:10:52 -05:00
Dan Gohman
a2197ebbeb Do one add_seals call, rather than one per flag. (#4366)
When setting up a copy on write image, we add several seals, to prevent
the image from being resized or modified. Set all the seals in a single
call, rather than doing one call per seal.
2022-07-01 16:00:18 -07:00
Alex Crichton
df1502531d Migrate from winapi to windows-sys (#4346)
* Migrate from `winapi` to `windows-sys`

I believe that Microsoft itself is supporting the development of
`windows-sys` and it's also used by `cap-std` now so this switches
Wasmtime's dependencies on Windows APIs from the `winapi` crate to the
`windows-sys` crate. We still have `winapi` in our dependency graph but
that may get phased out over time.

* Make windows-sys a target-specific dependency
2022-06-28 18:02:41 +00:00
Dan Gohman
fa36e86f2c Update WASI to cap-std 0.25 and windows-sys. (#4302)
This updates to rustix 0.35.6, and updates wasi-common to use cap-std 0.25 and
windows-sys (instead of winapi).

Changes include:

 - Better error code mappings on Windows.
 - Fixes undefined references to `utimensat` on Darwin.
 - Fixes undefined references to `preadv64` and `pwritev64` on Android.
 - Updates to io-lifetimes 0.7, which matches the io_safety API in Rust.
 - y2038 bug fixes for 32-bit platforms
2022-06-23 10:47:15 -07:00
wasmtime-publish
55946704cb Bump Wasmtime to 0.39.0 (#4225)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-06-06 09:12:47 -05:00
Alex Crichton
2af358dd9c Add a VMComponentContext type and create it on instantiation (#4215)
* Add a `VMComponentContext` type and create it on instantiation

This commit fills out the `wasmtime-runtime` crate's support for
`VMComponentContext` and creates it as part of the instantiation
process. This moves a few maps that were temporarily allocated in an
`InstanceData` into the `VMComponentContext` and additionally reads the
canonical options data from there instead.

This type still won't be used in its "full glory" until the lowering of
host functions is completely implemented, however, which will be coming
in a future commit.

* Remove `DerefMut` implementation

* Rebase conflicts
2022-06-03 13:34:50 -05:00
Pat Hickey
bffce37050 make backtrace collection a Config field rather than a cargo feature (#4183)
* sorta working in runtime

* wasmtime-runtime: get rid of wasm-backtrace feature

* wasmtime: factor to make backtraces recording optional. not configurable yet

* get rid of wasm-backtrace features

* trap tests: now a Trap optionally contains backtrace

* eliminate wasm-backtrace feature

* code review fixes

* ci: no more wasm-backtrace feature

* c_api: backtraces always enabled

* config: unwind required by backtraces and ref types

* plumbed

* test that disabling backtraces works

* code review comments

* fuzzing generator: wasm_backtrace is a runtime config now

* doc fix
2022-05-25 12:25:50 -07:00
wasmtime-publish
9a6854456d Bump Wasmtime to 0.38.0 (#4103)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-05-05 13:43:02 -05:00
Dan Gohman
321124ad21 Update to rustix 0.33.7. (#4052)
This pulls in the fix for bytecodealliance/rustix#285, which fixes a
failure in the WASI `time` APIs on powerpc64.
2022-04-19 16:27:56 -07:00
Alex Crichton
3f3afb455e Remove support for userfaultfd (#4040)
This commit removes support for the `userfaultfd` or "uffd" syscall on
Linux. This support was originally added for users migrating from Lucet
to Wasmtime, but the recent developments of kernel-supported
copy-on-write support for memory initialization wound up being more
appropriate for these use cases than usefaultfd. The main reason for
moving to copy-on-write initialization are:

* The `userfaultfd` feature was never necessarily intended for this
  style of use case with wasm and was susceptible to subtle and rare
  bugs that were extremely difficult to track down. We were never 100%
  certain that there were kernel bugs related to userfaultfd but the
  suspicion never went away.

* Handling faults with userfaultfd was always slow and single-threaded.
  Only one thread could handle faults and traveling to user-space to
  handle faults is inherently slower than handling them all in the
  kernel. The single-threaded aspect in particular presented a
  significant scaling bottleneck for embeddings that want to run many
  wasm instances in parallel.

* One of the major benefits of userfaultfd was lazy initialization of
  wasm linear memory which is also achieved with the copy-on-write
  initialization support we have right now.

* One of the suspected benefits of userfaultfd was less frobbing of the
  kernel vma structures when wasm modules are instantiated. Currently
  the copy-on-write support has a mitigation where we attempt to reuse
  the memory images where possible to avoid changing vma structures.
  When comparing this to userfaultfd's performance it was found that
  kernel modifications of vmas aren't a worrisome bottleneck so
  copy-on-write is suitable for this as well.

Overall there are no remaining benefits that userfaultfd gives that
copy-on-write doesn't, and copy-on-write solves a major downsides of
userfaultfd, the scaling issue with a single faulting thread.
Additionally copy-on-write support seems much more robust in terms of
kernel implementation since it's only using standard memory-management
syscalls which are heavily exercised. Finally copy-on-write support
provides a new bonus where read-only memory in WebAssembly can be mapped
directly to the same kernel cache page, even amongst many wasm instances
of the same module, which was never possible with userfaultfd.

In light of all this it's expected that all users of userfaultfd should
migrate to the copy-on-write initialization of Wasmtime (which is
enabled by default).
2022-04-18 12:42:26 -05:00
Dan Gohman
ade04c92c2 Update to rustix 0.33.6. (#4022)
Relevant to Wasmtime, this fixes undefined references to `utimensat` and
`futimens` on macOS 10.12 and earlier. See bytecodealliance/rustix#157
for details.

It also contains a fix for s390x which isn't currently needed by Wasmtime
itself, but which is needed to make rustix's own testsuite pass on s390x,
which helps people packaging rustix for use in Wasmtime. See
bytecodealliance/rustix#277 for details.
2022-04-13 11:51:57 -05:00
wasmtime-publish
78a595ac88 Bump Wasmtime to 0.37.0 (#3994)
Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-04-05 09:24:28 -05:00
Alex Crichton
7b5176baea Upgrade all crates to the Rust 2021 edition (#3991)
* Upgrade all crates to the Rust 2021 edition

I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.

* Fix compile of the C API

* Fix a warning

* Fix another warning
2022-04-04 12:27:12 -05:00
Alex Crichton
c89dc55108 Add a two-week delay to Wasmtime's release process (#3955)
* Bump to 0.36.0

* Add a two-week delay to Wasmtime's release process

This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:

* In #3915 it was realized that changes just before the 0.35.0 release
  weren't enough for an embedding use case, but the PR didn't meet the
  expectations for a full patch release.

* At Fastly we were about to start rolling out a new version of Wasmtime
  when over the weekend the fuzz bug #3951 was found. This led to the
  desire internally to have a "must have been fuzzed for this long"
  period of time for Wasmtime changes which we felt were better
  reflected in the release process itself rather than something about
  Fastly's own integration with Wasmtime.

This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.

Overall there are some new properties about Wasmtime with this proposal
as well:

* The `main` branch will always have a section in `RELEASES.md` which is
  listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
  release. For example it will be bump pre-emptively as part of the
  release process on the 5th where if `release-2.0.0` was created then
  the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
  `RELEASES.md` notes.

The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.

* Add notes on a security patch

* Clarify security fixes shouldn't be previewed early on CI
2022-04-01 13:11:10 -05:00
Dan Gohman
819b61b661 Update to rustix 0.33.5, to fix a link error on Android (#3966)
* Update to rustix 0.33.5, to fix a link error on Android

This updates to rustix 0.33.5, which includes bytecodealliance/rustix#258,
which fixes bytecodealliance/rustix#256, a link error on Android.

Fixes #3965.

* Bump the rustix versions in the Cargo.toml files too.
2022-03-29 10:17:10 -07:00
Alex Crichton
3f9bff17c8 Support disabling backtraces at compile time (#3932)
* Support disabling backtraces at compile time

This commit adds support to Wasmtime to disable, at compile time, the
gathering of backtraces on traps. The `wasmtime` crate now sports a
`wasm-backtrace` feature which, when disabled, will mean that backtraces
are never collected at compile time nor are unwinding tables inserted
into compiled objects.

The motivation for this commit stems from the fact that generating a
backtrace is quite a slow operation. Currently backtrace generation is
done with libunwind and `_Unwind_Backtrace` typically found in glibc or
other system libraries. When thousands of modules are loaded into the
same process though this means that the initial backtrace can take
nearly half a second and all subsequent backtraces can take upwards of
hundreds of milliseconds. Relative to all other operations in Wasmtime
this is extremely expensive at this time. In the future we'd like to
implement a more performant backtrace scheme but such an implementation
would require coordination with Cranelift and is a big chunk of work
that may take some time, so in the meantime if embedders don't need a
backtrace they can still use this option to disable backtraces at
compile time and avoid the performance pitfalls of collecting
backtraces.

In general I tried to originally make this a runtime configuration
option but ended up opting for a compile-time option because `Trap::new`
otherwise has no arguments and always captures a backtrace. By making
this a compile-time option it was possible to configure, statically, the
behavior of `Trap::new`. Additionally I also tried to minimize the
amount of `#[cfg]` necessary by largely only having it at the producer
and consumer sites.

Also a noteworthy restriction of this implementation is that if
backtrace support is disabled at compile time then reference types
support will be unconditionally disabled at runtime. With backtrace
support disabled there's no way to trace the stack of wasm frames which
means that GC can't happen given our current implementation.

* Always enable backtraces for the C API
2022-03-16 09:18:16 -05:00
wasmtime-publish
9137b4a50e Bump Wasmtime to 0.35.0 (#3885)
[automatically-tag-and-release-this-commit]

Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
2022-03-07 15:18:34 -06:00
Alex Crichton
bbd4a4a500 Enable copy-on-write heap initialization by default (#3825)
* Enable copy-on-write heap initialization by default

This commit enables the `Config::memfd` feature by default now that it's
been fuzzed for a few weeks on oss-fuzz, and will continue to be fuzzed
leading up to the next release of Wasmtime in early March. The
documentation of the `Config` option has been updated as well as adding
a CLI flag to disable the feature.

* Remove ubiquitous "memfd" terminology

Switch instead to forms of "memory image" or "cow" or some combination
thereof.

* Update new option names
2022-02-22 17:12:18 -06:00
bjorn3
4ed353a7e1 Extract jit_int.rs and most of jitdump_linux.rs for use outside of wasmtime (#2744)
* Extract gdb jit_int into wasmtime-jit-debug

* Move a big chunk of the jitdump code to wasmtime-jit-debug

* Fix doc markdown in perf_jitdump.rs
2022-02-22 09:23:44 -08:00
wasmtime-publish
39b88e4e9e Release Wasmtime 0.34.0 (#3768)
* Bump Wasmtime to 0.34.0

[automatically-tag-and-release-this-commit]

* Add release notes for 0.34.0

* Update release date to today

Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-02-07 19:16:26 -06:00
Chris Fallin
99ed8cc9be Merge pull request #3697 from cfallin/memfd-cow
memfd/madvise-based CoW pooling allocator
2022-02-02 13:04:26 -08:00
Dan Gohman
ffa9fe32aa Use is-terminal instead of atty.
Following up on #3696, use the new is-terminal crate to test for a tty
rather than having platform-specific logic in Wasmtime. The is-terminal
crate has a platform-independent API which takes a handle.

This also updates the tree to cap-std 0.24 etc., to avoid depending on
multiple versions of io-lifetimes at once, as enforced by the cargo deny
check.
2022-02-01 17:48:49 -08:00
Chris Fallin
0ff8f6ab20 Make build-config magic use memfd by default. 2022-01-31 22:39:20 -08:00
Chris Fallin
b73ac83c37 Add a pooling allocator mode based on copy-on-write mappings of memfds.
As first suggested by Jan on the Zulip here [1], a cheap and effective
way to obtain copy-on-write semantics of a "backing image" for a Wasm
memory is to mmap a file with `MAP_PRIVATE`. The `memfd` mechanism
provided by the Linux kernel allows us to create anonymous,
in-memory-only files that we can use for this mapping, so we can
construct the image contents on-the-fly then effectively create a CoW
overlay. Furthermore, and importantly, `madvise(MADV_DONTNEED, ...)`
will discard the CoW overlay, returning the mapping to its original
state.

By itself this is almost enough for a very fast
instantiation-termination loop of the same image over and over,
without changing the address space mapping at all (which is
expensive). The only missing bit is how to implement
heap *growth*. But here memfds can help us again: if we create another
anonymous file and map it where the extended parts of the heap would
go, we can take advantage of the fact that a `mmap()` mapping can
be *larger than the file itself*, with accesses beyond the end
generating a `SIGBUS`, and the fact that we can cheaply resize the
file with `ftruncate`, even after a mapping exists. So we can map the
"heap extension" file once with the maximum memory-slot size and grow
the memfd itself as `memory.grow` operations occur.

The above CoW technique and heap-growth technique together allow us a
fastpath of `madvise()` and `ftruncate()` only when we re-instantiate
the same module over and over, as long as we can reuse the same
slot. This fastpath avoids all whole-process address-space locks in
the Linux kernel, which should mean it is highly scalable. It also
avoids the cost of copying data on read, as the `uffd` heap backend
does when servicing pagefaults; the kernel's own optimized CoW
logic (same as used by all file mmaps) is used instead.

[1] https://bytecodealliance.zulipchat.com/#narrow/stream/206238-general/topic/Copy.20on.20write.20based.20instance.20reuse/near/266657772
2022-01-31 12:53:18 -08:00
wasmtime-publish
8043c1f919 Release Wasmtime 0.33.0 (#3648)
* Bump Wasmtime to 0.33.0

[automatically-tag-and-release-this-commit]

* Update relnotes for 0.33.0

* Wordsmithing relnotes

Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-01-05 13:26:50 -06:00
Dan Gohman
7b346b1f12 Update to cap-std 0.22.0. (#3611)
* Update to cap-std 0.22.0.

The main change relevant to Wasmtime here is that this includes the
rustix fix for compilation errors on Rust nightly with the `asm!` macro.

* Add itoa to deny.toml.

* Update the doc and fuzz builds to the latest Rust nightly.

* Update to libc 0.2.112 to pick up the `POLLRDHUP` fix.

* Update to cargo-fuzz 0.11, for compatibility with Rust nightly.

This appears to be the fix for rust-fuzz/cargo-fuzz#277.
2021-12-17 12:00:11 -08:00
wasmtime-publish
c1c4c59670 Release Wasmtime 0.32.0 (#3589)
* Bump Wasmtime to 0.32.0

[automatically-tag-and-release-this-commit]

* Update release notes for 0.32.0

Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2021-12-13 13:47:30 -06:00
Dan Gohman
ea0cb971fb Update to rustix 0.26.2. (#3521)
This pulls in a fix for Android, where Android's seccomp policy on older
versions is to make `openat2` irrecoverably crash the process, so we have
to do a version check up front rather than relying on `ENOSYS` to
determine if `openat2` is supported.

And it pulls in the fix for the link errors when multiple versions of
rsix/rustix are linked in.

And it has updates for two crate renamings: rsix has been renamed to
rustix, and unsafe-io has been renamed to io-extras.
2021-11-15 10:21:13 -08:00
Peter Huene
58aab85680 Add the pooling-allocator feature.
This commit adds the `pooling-allocator` feature to both the `wasmtime` and
`wasmtime-runtime` crates.

The feature controls whether or not the pooling allocator implementation is
built into the runtime and exposed as a supported instance allocation strategy
in the wasmtime API.

The feature is on by default for the `wasmtime` crate.

Closes #3513.
2021-11-10 13:25:55 -08:00
wasmtime-publish
c1a6a0523d Release Wasmtime 0.31.0 (#3489)
* Bump Wasmtime to 0.31.0

[automatically-tag-and-release-this-commit]

* Update 0.31.0 release notes

Co-authored-by: Wasmtime Publish <wasmtime-publish@users.noreply.github.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2021-10-29 09:09:35 -05:00
Alex Crichton
490d49a768 Adjust dependency directives between crates (#3420)
* Adjust dependency directives between crates

This commit is a preparation for the release process for Wasmtime. The
specific changes here are to delineate which crates are "public", and
all version requirements on non-public crates will now be done with
`=A.B.C` version requirements instead of today's `A.B.C` version
requirements.

The purpose for doing this is to assist with patch releases that might
happen in the future. Patch releases of wasmtime are already required to
not break the APIs of "public" crates, but no such guarantee is given
about "internal" crates. This means that a patch release runs the risk,
for example, of breaking an internal API. In doing so though we would
also need to release a new major version of the internal crate, but we
wouldn't have a great hole in the number scheme of major versions to do
so. By using `=A.B.C` requirements for internal crates it means we can
safely ignore strict semver-compatibility between releases of internal
crates for patch releases, since the only consumers of the crate will be
the corresponding patch release of the `wasmtime` crate itself (or other
public crates).

The `publish.rs` script has been updated with a check to verify that
dependencies on internal crates are all specified with an `=`
dependency, and dependnecies on all public crates are without a `=`
dependency. This will hopefully make it so we don't have to worry about
what to use where, we just let CI tell us what to do. Using this
modification all version dependency declarations have been updated.

Note that some crates were adjusted to simply remove their `version`
requirement in cases such as the crate wasn't published anyway (`publish
= false` was specified) or it's in the `dev-dependencies` section which
doesn't need version specifiers for path dependencies.

* Switch to normal sever deps for cranelift dependencies

These crates will now all be considered "public" where in patch releases
they will be guaranteed to not have breaking changes.
2021-10-26 09:06:03 -05:00
Pat Hickey
8554d69e4b update userfaultfd to 0.4.1 (#3442)
which updates nix to 0.23.0, getting rid of the benign RUSTSEC-2021-0119
in our dep tree
2021-10-11 13:06:54 -05:00
Dan Gohman
47490b4383 Use rsix to make system calls in Wasmtime. (#3355)
* Use rsix to make system calls in Wasmtime.

`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:

 - It eliminates some `unsafe` blocks in Wasmtime's code. There's
   still an `unsafe` block in the library, but this way, the `unsafe`
   is factored out and clearly scoped.

 - And, it makes error handling more consistent, factoring out code for
   checking return values and `io::Error::last_os_error()`, and code that
   does `errno::set_errno(0)`.

This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
2021-09-17 15:28:56 -07:00