Several of these badges were out of date, with some crates in wide production
use marked as "experimental". Insted of trying to keep them up to date, just
remove them, since they are [no longer displayed on crates.io].
[no longer displayed on crates.io]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-badges-section
* Enable the native target by default in winch
Match cranelift-codegen's build script where if no architecture is
explicitly enabled then the host architecture is implicitly enabled.
* Refactor Cranelift's ISA builder to share more with Winch
This commit refactors the `Builder` type to have a type parameter
representing the finished ISA with Cranelift and Winch having their own
typedefs for `Builder` to represent their own builders. The intention is
to use this shared functionality to produce more shared code between the
two codegen backends.
* Moving compiler shared components to a separate crate
* Restore native flag inference in compiler building
This fixes an oversight from the previous commits to use
`cranelift-native` to infer flags for the native host when using default
settings with Wasmtime.
* Move `Compiler::page_size_align` into wasmtime-environ
The `cranelift-codegen` crate doesn't need this and winch wants the same
implementation, so shuffle it around so everyone has access to it.
* Fill out `Compiler::{flags, isa_flags}` for Winch
These are easy enough to plumb through with some shared code for
Wasmtime.
* Plumb the `is_branch_protection_enabled` flag for Winch
Just forwarding an isa-specific setting accessor.
* Moving executable creation to shared compiler crate
* Adding builder back in and removing from shared crate
* Refactoring the shared pieces for the `CompilerBuilder`
I decided to move a couple things around from Alex's initial changes.
Instead of having the shared builder do everything, I went back to
having each compiler have a distinct builder implementation. I
refactored most of the flag setting logic into a single shared location,
so we can still reduce the amount of code duplication.
With them being separate, we don't need to maintain things like
`LinkOpts` which Winch doesn't currently use. We also have an avenue to
error when certain flags are sent to Winch if we don't support them. I'm
hoping this will make things more maintainable as we build out Winch.
I'm still unsure about keeping everything shared in a single crate
(`cranelift_shared`). It's starting to feel like this crate is doing too
much, which makes it difficult to name. There does seem to be a need for
two distinct abstraction: creating the final executable and the handling
of shared/ISA flags when building the compiler. I could make them into
two separate crates, but there doesn't seem to be enough there yet to
justify it.
* Documentation updates, and renaming the finish method
* Adding back in a default temporarily to pass tests, and removing some unused imports
* Fixing winch tests with wrong method name
* Removing unused imports from codegen shared crate
* Apply documentation formatting updates
Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>
* Adding back in cranelift_native flag inferring
* Adding new shared crate to publish list
* Adding write feature to pass cargo check
---------
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>
* Leverage Cargo's workspace inheritance feature
This commit is an attempt to reduce the complexity of the Cargo
manifests in this repository with Cargo's workspace-inheritance feature
becoming stable in Rust 1.64.0. This feature allows specifying fields in
the root workspace `Cargo.toml` which are then reused throughout the
workspace. For example this PR shares definitions such as:
* All of the Wasmtime-family of crates now use `version.workspace =
true` to have a single location which defines the version number.
* All crates use `edition.workspace = true` to have one default edition
for the entire workspace.
* Common dependencies are listed in `[workspace.dependencies]` to avoid
typing the same version number in a lot of different places (e.g. the
`wasmparser = "0.89.0"` is now in just one spot.
Currently the workspace-inheritance feature doesn't allow having two
different versions to inherit, so all of the Cranelift-family of crates
still manually specify their version. The inter-crate dependencies,
however, are shared amongst the root workspace.
This feature can be seen as a method of "preprocessing" of sorts for
Cargo manifests. This will help us develop Wasmtime but shouldn't have
any actual impact on the published artifacts -- everything's dependency
lists are still the same.
* Fix wasi-crypto tests
This commit replaces #4869 and represents the actual version bump that
should have happened had I remembered to bump the in-tree version of
Wasmtime to 1.0.0 prior to the branch-cut date. Alas!
* Upgrade wasm-tools crates, namely the component model
This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:
* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
more efficiently reading binary operators from a wasm binary. The old
`Operator`-based reading was left in place, however, and continues to
be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
this new API, but for now the biggest change is...
* bytecodealliance/wasm-tools#703 - this commit was a major update to
the component model AST. This commit almost entirely deals with the
fallout of this change.
The changes made to the component model were:
1. The `unit` type no longer exists. This was generally a simple change
where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
relatively lightweight and mostly just a renaming on the surface. I
took this opportunity to rename `val::Result` to `val::ResultVal` and
`types::Result` to `types::ResultType` to avoid clashing with the
standard library types. The `Option`-based types were handled with
this as well.
3. The payload type of `variant` and `result` types are now optional.
This affected many locations that calculate flat type
representations, ABI information, etc. The `#[derive(ComponentType)]`
macro now specifically handles Rust-defined `enum` types which have
no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
signature of invoking component functions because the return value is
now bound by `ComponentNamedList` (renamed from `ComponentParams`).
This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
all parameters/results. This mostly affected the text format used
throughout the tests.
I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.
* Update version numbers
* Use crates.io
* Implement fused adapters for `(list T)` types
This commit implements one of the two remaining types for adapter
fusion, lists. This implementation is particularly tricky for a number
of reasons:
* Lists have a number of validity checks which need to be carefully
implemented. For example the byte length of the list passed to
allocation in the destination module could overflow the 32-bit index
space. Additionally lists in 32-bit memories need a check that their
final address is in-bounds in the address space.
* In the effort to go ahead and support memory64 at the lowest layers
this is where much of the magic happens. Lists are naturally always
stored in memory and shifting between 64/32-bit address spaces
is done here. This notably required plumbing an `Options` around
during flattening/size/alignment calculations due to the size/types of
lists changing depending on the memory configuration.
I've also added a small `factc` program in this commit which should
hopefully assist in exploring and debugging adapter modules. This takes
as input a component (text or binary format) and then generates an
adapter module for all component function signatures found internally.
This commit notably does not include tests for lists. I tried to figure
out a good way to add these but I felt like there were too many cases to
test and the tests would otherwise be extremely verbose. Instead I think
the best testing strategy for this commit will be through #4537 which
should be relatively extensible to testing adapters between modules in
addition to host-based lifting/lowering.
* Improve handling of lists of 0-size types
* Skip overflow checks on byte sizes for 0-size types
* Skip the copy loop entirely when src/dst are both 0
* Skip the increments of src/dst pointers if either is 0-size
* Update semantics for zero-sized lists/strings
When a list/string has a 0-byte-size the base pointer is no longer
verified to be in-bounds to match the supposedly desired adapter
semantics where no trap happens because no turn of the loop happens.
This commit builds on bytecodealliance/wasm-tools#690 to add support to
testing of the component model to execute functions when running
`*.wast` files. This support is all built on #4442 as functions are
invoked through a "dynamic" API. Right now the testing and integration
is fairly crude but I'm hoping that we can try to improve it over time
as necessary. For now this should provide a hopefully more convenient
syntax for unit tests and the like.
* Implement variant translation in fused adapters
This commit implements the most general case of variants for fused
adapter trampolines. Additionally a number of other primitive types are
filled out here to assist with testing variants. The implementation
internally was relatively straightforward given the shape of variants,
but there's room for future optimization as necessary especially around
converting locals to various types.
This commit also introduces a "one off" fuzzer for adapters to ensure
that the generated adapter is valid. I hope to extend this fuzz
generator as more types are implemented to assist in various corner
cases that might arise. For now the fuzzer simply tests that the output
wasm module is valid, not that it actually executes correctly. I hope to
integrate with a fuzzer along the lines of #4307 one day to test the
run-time-correctness of the generated adapters as well, at which point
this fuzzer would become obsolete.
Finally this commit also fixes an issue with `u8` translation where
upper bits weren't zero'd out and were passed raw across modules.
Instead smaller-than-32 types now all mask out their upper bits and do
sign-extension as appropriate for unsigned/signed variants.
* Fuzz memory64 in the new trampoline fuzzer
Currently memory64 isn't supported elsewhere in the component model
implementation of Wasmtime but the trampoline compiler seems as good a
place as any to ensure that it at least works in isolation. This plumbs
through fuzz input into a `memory64` boolean which gets fed into
compilation. Some miscellaneous bugs were fixed as a result to ensure
that memory64 trampolines all validate correctly.
* Tweak manifest for doc build
* Remove dependency on `more-asserts`
In my recent adventures to do a bit of gardening on our dependencies I
noticed that there's a new major version for the `more-asserts` crate.
Instead of updating to this though I've opted to instead remove the
dependency since I don't think we heavily lean on this crate and
otherwise one-off prints are probably sufficient to avoid the need for
pulling in a whole crate for this.
* Remove exemption for `more-asserts`
* Add initial support for fused adapter trampolines
This commit lands a significant new piece of functionality to Wasmtime's
implementation of the component model in the form of the implementation
of fused adapter trampolines. Internally within a component core wasm
modules can communicate with each other by having their exports
`canon lift`'d to get `canon lower`'d into a different component. This
signifies that two components are communicating through a statically
known interface via the canonical ABI at this time. Previously Wasmtime
was able to identify that this communication was happening but it simply
panicked with `unimplemented!` upon seeing it. This commit is the
beginning of filling out this panic location with an actual
implementation.
The implementation route chosen here for fused adapters is to use a
WebAssembly module itself for the implementation. This means that, at
compile time of a component, Wasmtime is generating core WebAssembly
modules which then get recursively compiled within Wasmtime as well. The
choice to use WebAssembly itself as the implementation of fused adapters
stems from a few motivations:
* This does not represent a significant increase in the "trusted
compiler base" of Wasmtime. Getting the Wasm -> CLIF translation
correct once is hard enough much less for an entirely different IR to
CLIF. By generating WebAssembly no new interactions with Cranelift are
added which drastically reduces the possibilities for mistakes.
* Using WebAssembly means that component adapters are insulated from
miscompilations and mistakes. If something goes wrong it's defined
well within the WebAssembly specification how it goes wrong and what
happens as a result. This means that the "blast zone" for a wrong
adapter is the component instance but not the entire host itself.
Accesses to linear memory are guaranteed to be in-bounds and otherwise
handled via well-defined traps.
* A fully-finished fused adapter compiler is expected to be a
significant and quite complex component of Wasmtime. Functionality
along these lines is expected to be needed for Web-based polyfills of
the component model and by using core WebAssembly it provides the
opportunity to share code between Wasmtime and these polyfills for the
component model.
* Finally the runtime implementation of managing WebAssembly modules is
already implemented and quite easy to integrate with, so representing
fused adapters with WebAssembly results in very little extra support
necessary for the runtime implementation of instantiating and managing
a component.
The compiler added in this commit is dubbed Wasmtime's Fused Adapter
Compiler of Trampolines (FACT) because who doesn't like deriving a name
from an acronym. Currently the trampoline compiler is limited in its
support for interface types and only supports a few primitives. I plan
on filing future PRs to flesh out the support here for all the variants
of `InterfaceType`. For now this PR is primarily focused on all of the
other infrastructure for the addition of a trampoline compiler.
With the choice to use core WebAssembly to implement fused adapters it
means that adapters need to be inserted into a module. Unfortunately
adapters cannot all go into a single WebAssembly module because adapters
themselves have dependencies which may be provided transitively through
instances that were instantiated with other adapters. This means that a
significant chunk of this PR (`adapt.rs`) is dedicated to determining
precisely which adapters go into precisely which adapter modules. This
partitioning process attempts to make large modules wherever it can to
cut down on core wasm instantiations but is likely not optimal as
it's just a simple heuristic today.
With all of this added together it's now possible to start writing
`*.wast` tests that internally have adapted modules communicating with
one another. A `fused.wast` test suite was added as part of this PR
which is the beginning of tests for the support of the fused adapter
compiler added in this PR. Currently this is primarily testing some
various topologies of adapters along with direct/indirect modes. This
will grow many more tests over time as more types are supported.
Overall I'm not 100% satisfied with the testing story of this PR. When a
test fails it's very difficult to debug since everything is written in
the text format of WebAssembly meaning there's no "conveniences" to
print out the state of the world when things go wrong and easily debug.
I think this will become even more apparent as more tests are written
for more types in subsequent PRs. At this time though I know of no
better alternative other than leaning pretty heavily on fuzz-testing to
ensure this is all exercised.
* Fix an unused field warning
* Fix tests in `wasmtime-runtime`
* Add some more tests for compiled trampolines
* Remap exports when injecting adapters
The exports of a component were accidentally left unmapped which meant
that they indexed the instance indexes pre-adapter module insertion.
* Fix typo
* Rebase conflicts
* Bump versions of wasm-tools crates
Note that this leaves new features in the component model, outer type
aliases for core wasm types, unimplemented for now.
* Move to crates.io-based versions of tools
This commit updates the wasm-tools family of crates, notably pulling in
the refactorings and updates from bytecodealliance/wasm-tools#621 for
the latest iteration of the component model. This commit additionally
updates all support for the component model for these changes, notably:
* Many bits and pieces of type information was refactored. Many
`FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is
now `TypeIndex` as well as `ComponentTypeIndex` for the two type index
spaces in a component.
* A number of new sections are now processed to handle the core and
component variants.
* Internal maps were split such as the `funcs` map into
`component_funcs` and `funcs` (same for `instances`).
* Canonical options are now processed individually instead of one bulk
`into` definition.
Overall this was not a major update to the internals of handling the
component model in Wasmtime. Instead this was mostly a surface-level
refactoring to make sure that everything lines up with the new binary
format for components.
* All text syntax used in tests was updated to the new syntax.
* Initial skeleton of some component model processing
This commit is the first of what will likely be many to implement the
component model proposal in Wasmtime. This will be structured as a
series of incremental commits, most of which haven't been written yet.
My hope is to make this incremental and over time to make this easier to
review and easier to test each step in isolation.
Here much of the skeleton of how components are going to work in
Wasmtime is sketched out. This is not a complete implementation of the
component model so it's not all that useful yet, but some things you can
do are:
* Process the type section into a representation amenable for working
with in Wasmtime.
* Process the module section and register core wasm modules.
* Process the instance section for core wasm modules.
* Process core wasm module imports.
* Process core wasm instance aliasing.
* Ability to compile a component with core wasm embedded.
* Ability to instantiate a component with no imports.
* Ability to get functions from this component.
This is already starting to diverge from the previous module linking
representation where a `Component` will try to avoid unnecessary
metadata about the component and instead internally only have the bare
minimum necessary to instantiate the module. My hope is we can avoid
constructing most of the index spaces during instantiation only for it
to all ge thrown away. Additionally I'm predicting that we'll need to
see through processing where possible to know how to generate adapters
and where they are fused.
At this time you can't actually call a component's functions, and that's
the next PR that I would like to make.
* Add tests for the component model support
This commit uses the recently updated wasm-tools crates to add tests for
the component model added in the previous commit. This involved updating
the `wasmtime-wast` crate for component-model changes. Currently the
component support there is quite primitive, but enough to at least
instantiate components and verify the internals of Wasmtime are all
working correctly. Additionally some simple tests for the embedding API
have also been added.
* Update the wasm-tools family of crates
This commit updates these crates as used by Wasmtime for the recently
published versions to pull in changes necessary to support the component
model. I've split this out from #4005 to make it clear what's impacted
here and #4005 can simply rebase on top of this to pick up the necessary
changes.
* More test fixes
* Run a `cargo update` over our dependencies
This'll notably fix a `cargo audit` error where we have a pinned version
of the `regex` crate which has a CVE assigned to it.
* Update to `object` and `hashbrown` crates
Prune some duplicate versions showing up from the previous `cargo update`
* Update wasm-tools crates
This commit updates the wasm-tools family of crates as used in Wasmtime.
Notably this brings in the update which removes module linking support
as well as a number of internal refactorings around names and such
within wasmparser itself. This updates all of the wasm translation
support which binds to wasmparser as appropriate.
Other crates all had API-compatible changes for at least what Wasmtime
used so no further changes were necessary beyond updating version
requirements.
* Update a test expectation
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Bump to 0.36.0
* Add a two-week delay to Wasmtime's release process
This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:
* In #3915 it was realized that changes just before the 0.35.0 release
weren't enough for an embedding use case, but the PR didn't meet the
expectations for a full patch release.
* At Fastly we were about to start rolling out a new version of Wasmtime
when over the weekend the fuzz bug #3951 was found. This led to the
desire internally to have a "must have been fuzzed for this long"
period of time for Wasmtime changes which we felt were better
reflected in the release process itself rather than something about
Fastly's own integration with Wasmtime.
This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.
Overall there are some new properties about Wasmtime with this proposal
as well:
* The `main` branch will always have a section in `RELEASES.md` which is
listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
release. For example it will be bump pre-emptively as part of the
release process on the 5th where if `release-2.0.0` was created then
the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
`RELEASES.md` notes.
The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.
* Add notes on a security patch
* Clarify security fixes shouldn't be previewed early on CI
* fuzzing: Add a custom mutator based on `wasm-mutate`
* fuzz: Add a version of the `compile` fuzz target that uses `wasm-mutate`
* Update `wasmparser` dependencies
* Update the spec reference testsuite submodule
This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.
* Fix now-missing directories in build script
This commit moves the `address_map` field of `FunctionInfo` into a
custom-encoded section of the executable. The goal of this commit is, as
previous commits, to push less data through `bincode`. The `address_map`
field is actually extremely large and has huge benefits of not being
decoded when we load a module. This data is only used for traps and such
as well, so it's not overly important that it's massaged in to precise
data the runtime can extremely speedily use.
The `FunctionInfo` type does retain a tiny bit of information about the
function itself (it's start source location), but other than that the
`FunctionAddressMap` structure is moved from `wasmtime-environ` to
`wasmtime-cranelift` since it's now no longer needed outside of that
context.
* Move wasm data/debuginfo into the ELF compilation image
This commit moves existing allocations of `Box<[u8]>` stored separately
from compilation's final ELF image into the ELF image itself. The goal
of this commit is to reduce the amount of data which `bincode` will need
to process in the future. DWARF debugging information and wasm data
segments can be quite large, and they're relatively rarely read, so
there's typically no need to copy them around. Instead by moving them
into the ELF image this opens up the opportunity in the future to
eliminate copies and use data directly as-found in the image itself.
For information accessed possibly-multiple times, such as the wasm data
ranges, the indexes of the data within the ELF image are computed when
a `CompiledModule` is created. These indexes are then used to directly
index into the image without having to root around in the ELF file each
time they're accessed.
One other change located here is that the symbolication context
previously cloned the debug information into it to adhere to the
`'static` lifetime safely, but this isn't actually ever used in
`wasmtime` right now so the unsafety around this has been removed and
instead borrowed data is returned (no more clones, yay!).
* Fix lightbeam
* Disable default features of `gimli`
For cranelift-less builds this avoids pulling in extra dependencies into
`gimli` that we don't need, improving build times slightly.
* Enable read features where necessary
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Start a high-level architecture document for Wasmtime
This commit cleands up some existing documentation by removing a number
of "noop README files" and starting a high-level overview of the
architecture of Wasmtime. I've placed this documentation under the
contributing section of the book since it seems most useful for possible
contributors.
I've surely left some things out in this pass, and am happy to add more!
* Review comments
* More rewording
* typos
* Update wasm-tools crates
This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.
* Fix some wat