* cranelift: Implement ZeroExtend for a bunch of types in interpreter
* cranelift: Implement VConst on interpreter
* cranelift: Implement VallTrue on interpreter
* cranelift: Implement VanyTrue on interpreter
* cranelift: Mark `v{all,any}_true` tests as machinst only
* cranelift: Disable `vany_true` tests on aarch64
The `b64x2` case produces an illegal instruction. See #3305
Implemented `Umulhi` for the Cranelift interpreter, performing unsigned
integer multiplication and producing the high half of a double-length
result.
Fixed `ExtractUpper` conversion behaviour as part of this change, which
was extracting from a 128-bit value regardless of the size of the
original value.
Copyright (c) 2021, Arm Limited.
* Implement `Extractlane`, `UaddSat`, and `UsubSat` for Cranelift interpreter
Implemented the `Extractlane`, `UaddSat`, and `UsubSat` opcodes for the interpreter,
and added helper functions for working with SIMD vectors (`extractlanes`, `vectorizelanes`,
and `binary_arith`).
Copyright (c) 2021, Arm Limited
* Re-use tests + constrict Vector assert
- Re-use interpreter tests as runtests where supported.
- Constrict Vector assertion.
- Code style adjustments following feedback.
Copyright (c) 2021, Arm Limited
* Runtest `i32x4` vectors on AArch64; add `i64x2` tests
Copyright (c) 2021, Arm Limited
* Add `simd-` prefix to test filenames
Copyright (c) 2021, Arm Limited
* Return aliased `SmallVec` from `extractlanes`
Using a `SmallVec<[i128; 4]>` allows larger-width 128-bit vectors
(`i32x4`, `i64x2`, ...) to not cause heap allocations.
Copyright (c) 2021, Arm Limited
* Accept slice to `vectorizelanes` rather than `Vec`
Copyright (c) 2021, Arm Limited
* cranelift: Add stack support to the interpreter
We also change the approach for heap loads and stores.
Previously we would use the offset as the address to the heap. However,
this approach does not allow using the load/store instructions to
read/write from both the heap and the stack.
This commit changes the addressing mechanism of the interpreter. We now
return the real addresses from the addressing instructions
(stack_addr/heap_addr), and instead check if the address passed into
the load/store instructions points to an area in the heap or the stack.
* cranelift: Add virtual addresses to cranelift interpreter
Adds a Virtual Addressing scheme that was discussed as a better
alternative to returning the real addresses.
The virtual addresses are split into 4 regions (stack, heap, tables and
global values), and the address itself is composed of an `entry` field
and an `offset` field. In general the `entry` field corresponds to the
instance of the resource (e.g. table5 is entry 5) and the `offset` field
is a byte offset inside that entry.
There is one exception to this which is the stack, where due to only
having one stack, the whole address is an offset field.
The number of bits in entry vs offset fields is variable with respect to
the `region` and the address size (32bits vs 64bits). This is done
because with 32 bit addresses we would have to compromise on heap size,
or have a small number of global values / tables. With 64 bit addresses
we do not have to compromise on this, but we need to support 32 bit
addresses.
* cranelift: Remove interpreter trap codes
* cranelift: Calculate frame_offset when entering or exiting a frame
* cranelift: Add safe read/write interface to DataValue
* cranelift: DataValue write full 128bit slot for booleans
* cranelift: Use DataValue accessors for trampoline.
* Rewrite interpreter generically
This change re-implements the Cranelift interpreter to use generic values; this makes it possible to do abstract interpretation of Cranelift instructions. In doing so, the interpretation state is extracted from the `Interpreter` structure and is accessed via a `State` trait; this makes it possible to not only more clearly observe the interpreter's state but also to interpret using a dummy state (e.g. `ImmutableRegisterState`). This addition made it possible to implement more of the Cranelift instructions (~70%, ignoring the x86-specific instructions).
* Replace macros with closures