* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build
This fixes some hard-coded assumptions in the debug crate that
the native ELF files being accessed are little-endian; specifically
in create_gdbjit_image as well as in emit_dwarf.
In addition, data in WebAssembly memory always uses little-endian
byte order. Therefore, if the native architecture is big-endian,
all references to base types need to be marked as little-endian
using the DW_AT_endianity attribute, so that the debugger will
be able to correctly access them.
This commit changes how both the shared flags and ISA flags are stored in the
serialized module to detect incompatibilities when a serialized module is
instantiated.
It improves the error reporting when a compiled module has mismatched shared
flags.
This commit adds the `wasmtime settings` command to print out available
Cranelift settings for a target (defaults to the host).
The compile command has been updated to remove the Cranelift ISA options in
favor of encouraging users to use `wasmtime settings` to discover what settings
are available. This will reduce the maintenance cost for syncing the compile
command with Cranelift ISA flags.
This commit adds a `compile` command to the Wasmtime CLI.
The command can be used to Ahead-Of-Time (AOT) compile WebAssembly modules.
With the `all-arch` feature enabled, AOT compilation can be performed for
non-native architectures (i.e. cross-compilation).
The `Module::compile` method has been added to perform AOT compilation.
A few of the CLI flags relating to "on by default" Wasm features have been
changed to be "--disable-XYZ" flags.
A simple example of using the `wasmtime compile` command:
```text
$ wasmtime compile input.wasm
$ wasmtime input.cwasm
```
This commit refactors module instantiation in the runtime to allow for
different instance allocation strategy implementations.
It adds an `InstanceAllocator` trait with the current implementation put behind
the `OnDemandInstanceAllocator` struct.
The Wasmtime API has been updated to allow a `Config` to have an instance
allocation strategy set which will determine how instances get allocated.
This change is in preparation for an alternative *pooling* instance allocator
that can reserve all needed host process address space in advance.
This commit also makes changes to the `wasmtime_environ` crate to represent
compiled modules in a way that reduces copying at instantiation time.
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:
- Translate value-label metadata on the input into "value_label"
pseudo-instructions when lowering into VCode. These
pseudo-instructions take a register as input, denote a value label,
and semantically are like a "move into value label" -- i.e., they
update the current value (as seen by debugging tools) of the given
local. These pseudo-instructions emit no machine code.
- Perform a dataflow analysis *at the machine-code level*, tracking
value-labels that propagate into registers and into [SP+constant]
stack storage. This is a forward dataflow fixpoint analysis where each
storage location can contain a *set* of value labels, and each value
label can reside in a *set* of storage locations. (Meet function is
pairwise intersection by storage location.)
This analysis traces value labels symbolically through loads and
stores and reg-to-reg moves, so it will naturally handle spills and
reloads without knowing anything special about them.
- When this analysis converges, we have, at each machine-code offset, a
mapping from value labels to some number of storage locations; for
each offset for each label, we choose the best location (prefer
registers). Note that we can choose any location, as the symbolic
dataflow analysis is sound and guarantees that the value at the
value_label instruction propagates to all of the named locations.
- Then we can convert this mapping into a format that the DWARF
generation code (wasmtime's debug crate) can use.
This PR also adds the new-backend variant to the gdb tests on CI.
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
This introduces two changes:
- first, a Cargo feature is added to make it possible to use the
Cranelift x64 backend directly from wasmtime's CLI.
- second, when passing a `cranelift-flags` parameter, and the given
parameter's name doesn't exist at the target-independent flag level, try
to set it as a target-dependent setting.
These two changes make it possible to try out the new x64 backend with:
cargo run --features experimental_x64 -- run --cranelift-flags use_new_backend=true -- /path/to/a.wasm
Right now, this will fail because most opcodes required by the
trampolines are actually not implemented yet.
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929Fixes#1804
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
There was a bug how value labels were resolved, which caused some DWARF expressions not be transformed, e.g. those are in the registers.
* Implements FIXME in expression.rs
* Move TargetIsa from CompiledExpression structure
* Fix expression format for GDB
* Add tests for parsing
* Proper logic in ValueLabelRangesBuilder::process_label
* Tests for ValueLabelRangesBuilder
* Refactor build_with_locals to return Iterator instead of Vec<_>
* Misc comments and magical numbers
This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
This exposes the functionality of `fde::map_reg` on the `TargetIsa` trait, avoiding compilation errors on architectures where register mapping is not yet supported. The change is conditially compiled under the `unwind` feature.
Both cranelift-codegen and wasmtime-debug need to map Cranelift registers to Gimli registers. Previously both crates had an almost-identical `map_reg` implementation. This change:
- removes the wasmtime-debug implementation
- improves the cranelift-codegen implementation with custom errors
- exposes map_reg in `cranelift_codegen::isa::fde::map_reg` and subsequently `wasmtime_environ::isa::fde::map_reg`
* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
* rename PassiveElemIndex to ElemIndex and same for PassiveDataIndex (#1411)
* rename PassiveDataIndex to DataIndex
* rename PassiveElemIndex to ElemIndex
* Apply renamings to wasmtime as well
* Run rustfmt
Co-authored-by: csmoe <csmoe@msn.com>
* Remove the `Flags` type from `Config` API
This commit removes the final foreign type from the `Config` API in the
`wasmtime` crate. The cranelift `Flags` type is now expanded into
various options on the `Config` structure itself, all prefixed with
`cranelift_` since they're only relevant to the Cranelift backend. The
various changes here were:
* The `avoid_div_traps` feature is enabled by default since it seemed
that was done anywhere anyway.
* Enabling the wasm SIMD feature enables the requisite features in
Cranelift as well.
* A method for enabling the debug verifier has been added.
* A method for configuring the Cranelift optimization level, as well as
a corresponding enumeration, has been added.
* Assert that `Config` is both `Send` and `Sync`