Commit Graph

9 Commits

Author SHA1 Message Date
Alex Crichton
29c7de7340 Update wasm-tools dependencies (#4970)
* Update wasm-tools dependencies

This update brings in a number of features such as:

* The component model binary format and AST has been slightly adjusted
  in a few locations. Names are dropped from parameters/results now in
  the internal representation since they were not used anyway. At this
  time the ability to bind a multi-return function has not been exposed.

* The `wasmparser` validator pass will now share allocations with prior
  functions, providing what's probably a very minor speedup for Wasmtime
  itself.

* The text format for many component-related tests now requires named
  parameters.

* Some new relaxed-simd instructions are updated to be ignored.

I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.

* Update audit information for new crates
2022-09-27 13:12:34 -05:00
Alex Crichton
99c6d7c083 components: Improve heuristic for splitting adapters (#4827)
This commit is a (second?) attempt at improving the generation of
adapter modules to avoid excessively large functions for fuzz-generated
inputs.

The first iteration of adapters simply translated an entire type
inline per-function. This proved problematic however since the size of
the adapter function was on the order of the overall size of a type,
which can be exponential for a type that is otherwise defined in linear
size.

The second iteration of adapters performed a split where memory-based
types would always be translated with individual functions. The theory
here was that once a type was memory-based it was large enough to not
warrant inline translation in the original function and a separate
outlined function could be shared and otherwise used to deduplicate
portions of the original giant function. This again proved problematic,
however, since the splitting heuristic was quite naive and didn't take
into account large stack-based types.

This third iteration in this commit replaces the previous system with a
similar but slightly more general one. Each adapter function now has a
concept of fuel which is decremented each time a layer of a type is
translated. When fuel runs out further translations are deferred to
outlined functions. The fuel counter should hopefully provide a sort of
reasonable upper bound on the size of a function and the outlined
functions should ideally provide the ability to be called from multiple
places and therefore deduplicate what would otherwise be a massive
function.

This final iteration is another attempt at guaranteeing that an adapter
module is linear in size with respect to the input type section of the
original module. Additionally this iteration uniformly handles stack and
memory-based translations which means that stack-based translations
can't go wild in their function size and memory-based translations may
benefit slightly from having at least a little bit of inlining
internally.

The immediate impact of this is that the `component_api` fuzzer seems to
be running at a faster rate than before. Otherwise #4825 is sufficient
to invalidate preexisting fuzz-bugs and this PR is hopefully the final
nail in the coffin to prevent further timeouts for small inputs cropping
up.

Closes #4816
2022-08-31 12:09:45 -05:00
Alex Crichton
57dca934ad Upgrade wasm-tools crates, namely the component model (#4715)
* Upgrade wasm-tools crates, namely the component model

This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:

* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
  more efficiently reading binary operators from a wasm binary. The old
  `Operator`-based reading was left in place, however, and continues to
  be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
  this new API, but for now the biggest change is...

* bytecodealliance/wasm-tools#703 - this commit was a major update to
  the component model AST. This commit almost entirely deals with the
  fallout of this change.

The changes made to the component model were:

1. The `unit` type no longer exists. This was generally a simple change
   where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
   relatively lightweight and mostly just a renaming on the surface. I
   took this opportunity to rename `val::Result` to `val::ResultVal` and
   `types::Result` to `types::ResultType` to avoid clashing with the
   standard library types. The `Option`-based types were handled with
   this as well.
3. The payload type of `variant` and `result` types are now optional.
   This affected many locations that calculate flat type
   representations, ABI information, etc. The `#[derive(ComponentType)]`
   macro now specifically handles Rust-defined `enum` types which have
   no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
   signature of invoking component functions because the return value is
   now bound by `ComponentNamedList` (renamed from `ComponentParams`).
   This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
   all parameters/results. This mostly affected the text format used
   throughout the tests.

I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.

* Update version numbers

* Use crates.io
2022-08-17 16:17:34 +00:00
Alex Crichton
bc8e36a6af Refactor and optimize the flat type calculations (#4708)
* Optimize flat type representation calculations

Previously calculating the flat type representation would be done
recursively for an entire type tree every time it was visited.
Additionally the flat type representation was entirely built only to be
thrown away if it was too large at the end. This chiefly presented a
source of recursion based on the type structure in the component model
which fuzzing does not like as it reports stack overflows.

This commit overhauls the representation of flat types in Wasmtime by
caching the representation for each type in the compile-time
`ComponentTypesBuilder` structure. This avoids recalculating each time
the flat representation is queried and additionally allows opportunity
to have more short-circuiting to avoid building overly-large vectors.

* Remove duplicate flat count calculation in wasmtime

Roughly share the infrastructure in the `wasmtime-environ` crate, namely
the non-recursive and memoizing nature of the calculation.

* Fix component fuzz build

* Fix example compile
2022-08-16 13:31:47 -05:00
Alex Crichton
bd70dbebbd Deduplicate some size/align calculations (#4658)
This commit is an effort to reduce the amount of complexity around
managing the size/alignment calculations of types in the canonical ABI.
Previously the logic for the size/alignment of a type was spread out
across a number of locations. While each individual calculation is not
really the most complicated thing in the world having the duplication in
so many places was constantly worrying me.

I've opted in this commit to centralize all of this within the runtime
at least, and now there's only one "duplicate" of this information in
the fuzzing infrastructure which is to some degree less important to
deduplicate. This commit introduces a new `CanonicalAbiInfo` type to
house all abi size/align information for both memory32 and memory64.
This new type is then used pervasively throughout fused adapter
compilation, dynamic `Val` management, and typed functions. This type
was also able to reduce the complexity of the macro-generated code
meaning that even `wasmtime-component-macro` is performing less math
than it was before.

One other major feature of this commit is that this ABI information is
now saved within a `ComponentTypes` structure. This avoids recursive
querying of size/align information frequently and instead effectively
caching it. This was a worry I had for the fused adapter compiler which
frequently sought out size/align information and would recursively
descend each type tree each time. The `fact-valid-module` fuzzer is now
nearly 10x faster in terms of iterations/s which I suspect is due to
this caching.
2022-08-09 14:52:20 -05:00
Alex Crichton
866ec46613 Implement roundtrip fuzzing of component adapters (#4640)
* Improve the `component_api` fuzzer on a few dimensions

* Update the generated component to use an adapter module. This involves
  two core wasm instances communicating with each other to test that
  data flows through everything correctly. The intention here is to fuzz
  the fused adapter compiler. String encoding options have been plumbed
  here to exercise differences in string encodings.

* Use `Cow<'static, ...>` and `static` declarations for each static test
  case to try to cut down on rustc codegen time.

* Add `Copy` to derivation of fuzzed enums to make `derive(Clone)`
  smaller.

* Use `Store<Box<dyn Any>>` to try to cut down on codegen by
  monomorphizing fewer `Store<T>` implementation.

* Add debug logging to print out what's flowing in and what's flowing
  out for debugging failures.

* Improve `Debug` representation of dynamic value types to more closely
  match their Rust counterparts.

* Fix a variant issue with adapter trampolines

Previously the offset of the payload was calculated as the discriminant
aligned up to the alignment of a singular case, but instead this needs
to be aligned up to the alignment of all cases to ensure all cases start
at the same location.

* Fix a copy/paste error when copying masked integers

A 32-bit load was actually doing a 16-bit load by accident since it was
copied from the 16-bit load-and-mask case.

* Fix f32/i64 conversions in adapter modules

The adapter previously erroneously converted the f32 to f64 and then to
i64, where instead it should go from f32 to i32 to i64.

* Fix zero-sized flags in adapter modules

This commit corrects the size calculation for zero-sized flags in
adapter modules.

cc #4592

* Fix a variant size calculation bug in adapters

This fixes the same issue found with variants during normal host-side
fuzzing earlier where the size of a variant needs to align up the
summation of the discriminant and the maximum case size.

* Implement memory growth in libc bump realloc

Some fuzz-generated test cases are copying lists large enough to exceed
one page of memory so bake in a `memory.grow` to the bump allocator as
well.

* Avoid adapters of exponential size

This commit is an attempt to avoid adapters being exponentially sized
with respect to the type hierarchy of the input. Previously all
adaptation was done inline within each adapter which meant that if
something was structured as `tuple<T, T, T, T, ...>` the translation of
`T` would be inlined N times. For very deeply nested types this can
quickly create an exponentially sized adapter with types of the form:

    (type $t0 (list u8))
    (type $t1 (tuple $t0 $t0))
    (type $t2 (tuple $t1 $t1))
    (type $t3 (tuple $t2 $t2))
    ;; ...

where the translation of `t4` has 8 different copies of translating
`t0`.

This commit changes the translation of types through memory to almost
always go through a helper function. The hope here is that it doesn't
lose too much performance because types already reside in memory.

This can still lead to exponentially sized adapter modules to a lesser
degree where if the translation all happens on the "stack", e.g. via
`variant`s and their flat representation then many copies of one
translation could still be made. For now this commit at least gets the
problem under control for fuzzing where fuzzing doesn't trivially find
type hierarchies that take over a minute to codegen the adapter module.

One of the main tricky parts of this implementation is that when a
function is generated the index that it will be placed at in the final
module is not known at that time. To solve this the encoded form of the
`Call` instruction is saved in a relocation-style format where the
`Call` isn't encoded but instead saved into a different area for
encoding later. When the entire adapter module is encoded to wasm these
pseudo-`Call` instructions are encoded as real instructions at that
time.

* Fix some memory64 issues with string encodings

Introduced just before #4623 I had a few mistakes related to 64-bit
memories and mixing 32/64-bit memories.

* Actually insert into the `translate_mem_funcs` map

This... was the whole point of having the map!

* Assert memory growth succeeds in bump allocator
2022-08-08 18:01:45 +00:00
Alex Crichton
fb59de15af Implement fused adapters for (list T) types (#4558)
* Implement fused adapters for `(list T)` types

This commit implements one of the two remaining types for adapter
fusion, lists. This implementation is particularly tricky for a number
of reasons:

* Lists have a number of validity checks which need to be carefully
  implemented. For example the byte length of the list passed to
  allocation in the destination module could overflow the 32-bit index
  space. Additionally lists in 32-bit memories need a check that their
  final address is in-bounds in the address space.

* In the effort to go ahead and support memory64 at the lowest layers
  this is where much of the magic happens. Lists are naturally always
  stored in memory and shifting between 64/32-bit address spaces
  is done here. This notably required plumbing an `Options` around
  during flattening/size/alignment calculations due to the size/types of
  lists changing depending on the memory configuration.

I've also added a small `factc` program in this commit which should
hopefully assist in exploring and debugging adapter modules. This takes
as input a component (text or binary format) and then generates an
adapter module for all component function signatures found internally.

This commit notably does not include tests for lists. I tried to figure
out a good way to add these but I felt like there were too many cases to
test and the tests would otherwise be extremely verbose. Instead I think
the best testing strategy for this commit will be through #4537 which
should be relatively extensible to testing adapters between modules in
addition to host-based lifting/lowering.

* Improve handling of lists of 0-size types

* Skip overflow checks on byte sizes for 0-size types
* Skip the copy loop entirely when src/dst are both 0
* Skip the increments of src/dst pointers if either is 0-size

* Update semantics for zero-sized lists/strings

When a list/string has a 0-byte-size the base pointer is no longer
verified to be in-bounds to match the supposedly desired adapter
semantics where no trap happens because no turn of the loop happens.
2022-08-01 17:02:08 -05:00
Alex Crichton
285bc5ce24 Implement variant translation in fused adapters (#4534)
* Implement variant translation in fused adapters

This commit implements the most general case of variants for fused
adapter trampolines. Additionally a number of other primitive types are
filled out here to assist with testing variants. The implementation
internally was relatively straightforward given the shape of variants,
but there's room for future optimization as necessary especially around
converting locals to various types.

This commit also introduces a "one off" fuzzer for adapters to ensure
that the generated adapter is valid. I hope to extend this fuzz
generator as more types are implemented to assist in various corner
cases that might arise. For now the fuzzer simply tests that the output
wasm module is valid, not that it actually executes correctly. I hope to
integrate with a fuzzer along the lines of #4307 one day to test the
run-time-correctness of the generated adapters as well, at which point
this fuzzer would become obsolete.

Finally this commit also fixes an issue with `u8` translation where
upper bits weren't zero'd out and were passed raw across modules.
Instead smaller-than-32 types now all mask out their upper bits and do
sign-extension as appropriate for unsigned/signed variants.

* Fuzz memory64 in the new trampoline fuzzer

Currently memory64 isn't supported elsewhere in the component model
implementation of Wasmtime but the trampoline compiler seems as good a
place as any to ensure that it at least works in isolation. This plumbs
through fuzz input into a `memory64` boolean which gets fed into
compilation. Some miscellaneous bugs were fixed as a result to ensure
that memory64 trampolines all validate correctly.

* Tweak manifest for doc build
2022-07-27 09:14:43 -05:00
Alex Crichton
97894bc65e Add initial support for fused adapter trampolines (#4501)
* Add initial support for fused adapter trampolines

This commit lands a significant new piece of functionality to Wasmtime's
implementation of the component model in the form of the implementation
of fused adapter trampolines. Internally within a component core wasm
modules can communicate with each other by having their exports
`canon lift`'d to get `canon lower`'d into a different component. This
signifies that two components are communicating through a statically
known interface via the canonical ABI at this time. Previously Wasmtime
was able to identify that this communication was happening but it simply
panicked with `unimplemented!` upon seeing it. This commit is the
beginning of filling out this panic location with an actual
implementation.

The implementation route chosen here for fused adapters is to use a
WebAssembly module itself for the implementation. This means that, at
compile time of a component, Wasmtime is generating core WebAssembly
modules which then get recursively compiled within Wasmtime as well. The
choice to use WebAssembly itself as the implementation of fused adapters
stems from a few motivations:

* This does not represent a significant increase in the "trusted
  compiler base" of Wasmtime. Getting the Wasm -> CLIF translation
  correct once is hard enough much less for an entirely different IR to
  CLIF. By generating WebAssembly no new interactions with Cranelift are
  added which drastically reduces the possibilities for mistakes.

* Using WebAssembly means that component adapters are insulated from
  miscompilations and mistakes. If something goes wrong it's defined
  well within the WebAssembly specification how it goes wrong and what
  happens as a result. This means that the "blast zone" for a wrong
  adapter is the component instance but not the entire host itself.
  Accesses to linear memory are guaranteed to be in-bounds and otherwise
  handled via well-defined traps.

* A fully-finished fused adapter compiler is expected to be a
  significant and quite complex component of Wasmtime. Functionality
  along these lines is expected to be needed for Web-based polyfills of
  the component model and by using core WebAssembly it provides the
  opportunity to share code between Wasmtime and these polyfills for the
  component model.

* Finally the runtime implementation of managing WebAssembly modules is
  already implemented and quite easy to integrate with, so representing
  fused adapters with WebAssembly results in very little extra support
  necessary for the runtime implementation of instantiating and managing
  a component.

The compiler added in this commit is dubbed Wasmtime's Fused Adapter
Compiler of Trampolines (FACT) because who doesn't like deriving a name
from an acronym. Currently the trampoline compiler is limited in its
support for interface types and only supports a few primitives. I plan
on filing future PRs to flesh out the support here for all the variants
of `InterfaceType`. For now this PR is primarily focused on all of the
other infrastructure for the addition of a trampoline compiler.

With the choice to use core WebAssembly to implement fused adapters it
means that adapters need to be inserted into a module. Unfortunately
adapters cannot all go into a single WebAssembly module because adapters
themselves have dependencies which may be provided transitively through
instances that were instantiated with other adapters. This means that a
significant chunk of this PR (`adapt.rs`) is dedicated to determining
precisely which adapters go into precisely which adapter modules. This
partitioning process attempts to make large modules wherever it can to
cut down on core wasm instantiations but is likely not optimal as
it's just a simple heuristic today.

With all of this added together it's now possible to start writing
`*.wast` tests that internally have adapted modules communicating with
one another. A `fused.wast` test suite was added as part of this PR
which is the beginning of tests for the support of the fused adapter
compiler added in this PR. Currently this is primarily testing some
various topologies of adapters along with direct/indirect modes. This
will grow many more tests over time as more types are supported.

Overall I'm not 100% satisfied with the testing story of this PR. When a
test fails it's very difficult to debug since everything is written in
the text format of WebAssembly meaning there's no "conveniences" to
print out the state of the world when things go wrong and easily debug.
I think this will become even more apparent as more tests are written
for more types in subsequent PRs. At this time though I know of no
better alternative other than leaning pretty heavily on fuzz-testing to
ensure this is all exercised.

* Fix an unused field warning

* Fix tests in `wasmtime-runtime`

* Add some more tests for compiled trampolines

* Remap exports when injecting adapters

The exports of a component were accidentally left unmapped which meant
that they indexed the instance indexes pre-adapter module insertion.

* Fix typo

* Rebase conflicts
2022-07-25 23:13:26 +00:00