* Reimplement how unwind information is stored
This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.
Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:
* On Windows the implementation was much easier. The unwinding
information on Windows is already stored after the function itself in
the text section. This was actually slightly duplicated in object
building and in code memory allocation. Now the object building
continues to do the same, recording unwinding information after
functions, and code memory no longer manually tracks this.
Additionally Wasmtime will emit a special custom section in the object
file with unwinding information which is the list of
`RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
means that the object file has all the information precompiled into it
and registration at runtime is simply passing a few pointers around to
the runtime.
* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
section is created on-the-fly with offsets in FDEs specified as the
absolute address that functions are loaded at. This absolute
address hindered the ability to precompile the FDE into the object
file itself. I've switched how addresses are encoded, though, to using
`DW_EH_PE_pcrel` which means that FDE addresses are now specified
relative to the FDE itself. This means that we can maintain a fixed
offset between the `.eh_frame` loaded in memory and the beginning of
code memory. When doing so this enables precompiling the `.eh_frame`
section into the object file and at runtime when loading an object no
further construction of unwinding information is needed.
The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.
This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.
Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.
It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.
* Remove isa reexport from wasmtime-environ
* Trim down reexports of `cranelift-codegen`
Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.
* Fix debug tests
* Review comments
This commit reduces the size of `InstructionAddressMap` from 24 bytes to
8 bytes by dropping the `code_len` field and reducing `code_offset` to
`u32` instead of `usize`. The intention is to primarily make the
in-memory version take up less space, and the hunch is that the
`code_len` is largely not necessary since most entries in this map are
always adjacent to one another. The `code_len` field is now implied by
the `code_offset` field of the next entry in the map.
This isn't as big of an improvement to serialized module size as #2321
or #2322, primarily because of the switch to variable-length encoding.
Despite this though it shaves about 10MB off the encoded size of the
module from #2318
* Refactor where results of compilation are stored
This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.
The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.
Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.
The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".
* Don't clear out fields, just don't store them
Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
* Don't re-parse wasm for debuginfo
This commit updates debuginfo parsing to happen during the main
translation of the original wasm module. This avoid re-parsing the wasm
module twice (at least the section-level headers). Additionally this
ties debuginfo directly to a `ModuleTranslation` which makes it easier
to process debuginfo for nested modules in the upcoming module linking
proposal.
The changes here are summarized by taking the `read_debuginfo` function
and merging it with the main module translation that happens which is
driven by cranelift. Some new hooks were added to the module environment
trait to support this, but most of it was integrating with existing hooks.
* Fix tests in debug crate
There was a bug how value labels were resolved, which caused some DWARF expressions not be transformed, e.g. those are in the registers.
* Implements FIXME in expression.rs
* Move TargetIsa from CompiledExpression structure
* Fix expression format for GDB
* Add tests for parsing
* Proper logic in ValueLabelRangesBuilder::process_label
* Tests for ValueLabelRangesBuilder
* Refactor build_with_locals to return Iterator instead of Vec<_>
* Misc comments and magical numbers
The crates/debug/src/transform/address_transform.rs is unoptimized in terms of data structures. This PR refactors this file to remove creation of intermediate in-heap structures, thus improves overall performance of the DWARF transformation.
* Reduce amount of memory allocated in translate_ranges_raw
* refactor translate_ranges
* Don't transform non-unit .debug_line
* type annotation for TransformRangeXXXIter's
* Fix empty generated wasm positions
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc