Commit Graph

49 Commits

Author SHA1 Message Date
Alex Crichton
e8aa7bb53b Reimplement how unwind information is stored (#3180)
* Reimplement how unwind information is stored

This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.

Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:

* On Windows the implementation was much easier. The unwinding
  information on Windows is already stored after the function itself in
  the text section. This was actually slightly duplicated in object
  building and in code memory allocation. Now the object building
  continues to do the same, recording unwinding information after
  functions, and code memory no longer manually tracks this.
  Additionally Wasmtime will emit a special custom section in the object
  file with unwinding information which is the list of
  `RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
  means that the object file has all the information precompiled into it
  and registration at runtime is simply passing a few pointers around to
  the runtime.

* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
  section is created on-the-fly with offsets in FDEs specified as the
  absolute address that functions are loaded at. This absolute
  address hindered the ability to precompile the FDE into the object
  file itself. I've switched how addresses are encoded, though, to using
  `DW_EH_PE_pcrel` which means that FDE addresses are now specified
  relative to the FDE itself. This means that we can maintain a fixed
  offset between the `.eh_frame` loaded in memory and the beginning of
  code memory. When doing so this enables precompiling the `.eh_frame`
  section into the object file and at runtime when loading an object no
  further construction of unwinding information is needed.

The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.

This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.

Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.

It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.

* Remove isa reexport from wasmtime-environ

* Trim down reexports of `cranelift-codegen`

Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.

* Fix debug tests

* Review comments
2021-08-17 17:14:18 -05:00
Alex Crichton
0313e30d76 Remove dependency on TargetIsa from Wasmtime crates (#3178)
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.

This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:

* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
  server as an abstraction used to create compilers and configure them
  in a uniform fashion. The `wasmtime::Config` type now uses this
  instead of cranelift-specific settings. The `wasmtime-jit` crate
  exports the ability to create a compiler builder from a
  `CompilationStrategy`, which only works for Cranelift right now. In a
  cranelift-less build of Wasmtime this is expected to return a trait
  object that fails all requests to compile.

* The `Compiler` trait in the `wasmtime_environ` crate has been souped
  up with a number of methods that Wasmtime and other crates needed.

* The `wasmtime-debug` crate is now moved entirely behind the
  `wasmtime-cranelift` crate.

* The `wasmtime-cranelift` crate is now only depended on by the
  `wasmtime-jit` crate.

* Wasm types in `cranelift-wasm` no longer contain their IR type,
  instead they only contain the `WasmType`. This is required to get
  everything to align correctly but will also be required in a future
  refactoring where the types used by `cranelift-wasm` will be extracted
  to a separate crate.

* I moved around a fair bit of code in `wasmtime-cranelift`.

* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
  `wasmtime-jit`.
2021-08-16 09:55:39 -05:00
Alex Crichton
e9f33fc618 Move all trampoline compilation to wasmtime-cranelift (#3176)
* Move all trampoline compilation to `wasmtime-cranelift`

This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.

* Fix windows build
2021-08-12 16:58:21 -05:00
Alex Crichton
e68aa99588 Implement the memory64 proposal in Wasmtime (#3153)
* Implement the memory64 proposal in Wasmtime

This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.

A number of internal and public interfaces are changing as a result of
this commit, for example:

* Acessors on `wasmtime::Memory` that work with pages now all return
  `u64` unconditionally rather than `u32`. This makes it possible to
  accommodate 64-bit memories with this API, but we may also want to
  consider `usize` here at some point since the host can't grow past
  `usize`-limited pages anyway.

* The `wasmtime::Limits` structure is removed in favor of
  minimum/maximum methods on table/memory types.

* Many libcall intrinsics called by jit code now unconditionally take
  `u64` arguments instead of `u32`. Return values are `usize`, however,
  since the return value, if successful, is always bounded by host
  memory while arguments can come from any guest.

* The `heap_addr` clif instruction now takes a 64-bit offset argument
  instead of a 32-bit one. It turns out that the legalization of
  `heap_addr` already worked with 64-bit offsets, so this change was
  fairly trivial to make.

* The runtime implementation of mmap-based linear memories has changed
  to largely work in `usize` quantities in its API and in bytes instead
  of pages. This simplifies various aspects and reflects that
  mmap-memories are always bound by `usize` since that's what the host
  is using to address things, and additionally most calculations care
  about bytes rather than pages except for the very edge where we're
  going to/from wasm.

Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.

In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:

* All memory accesses are bounds-checked. I'm not sure how aggressively
  Cranelift tries to optimize out bounds checks, but I suspect not a ton
  since we haven't stressed this much historically.

* Heaps are always precisely sized. This means that every call to
  `memory.grow` will incur a `memcpy` of memory from the old heap to the
  new. We probably want to at least look into `mremap` on Linux and
  otherwise try to implement schemes where dynamic heaps have some
  reserved pages to grow into to help amortize the cost of
  `memory.grow`.

The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.

[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md

* Fix some tests

* More test fixes

* Fix wasmtime tests

* Fix doctests

* Revert to 32-bit immediate offsets in `heap_addr`

This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.

* Disable memory64 for spectest fuzzing

* Fix wrong offset being added to heap addr

* More comments!

* Clarify bytes/pages
2021-08-12 09:40:20 -05:00
Alex Crichton
a33caec9be Bump the wasm-tools crates (#3139)
* Bump the wasm-tools crates

Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.

* Update lightbeam
2021-08-04 09:53:47 -05:00
Chris Fallin
a13a777230 Bump to Wasmtime v0.29.0 and Cranelift 0.76.0. 2021-08-02 11:24:09 -07:00
Alex Crichton
63a3bbbf5a Change VMMemoryDefinition::current_length to usize (#3134)
* Change VMMemoryDefinition::current_length to `usize`

This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.

The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).

This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).

The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.

Closes #3022

* Add tests for memory.size at maximum memory size

* Add a dfg helper method
2021-08-02 13:09:40 -05:00
Alex Crichton
992d85ae8b Add a type parameter to VMOffsets for pointer size (#3020)
* Add a type parameter to `VMOffsets` for pointer size

This commit adds a type parameter to `VMOffsets` representing the
pointer size to improve computations in `wasmtime-runtime` which always
use a constant value of the host's pointer size. The type parameter is
`u8` for `wasmtime-cranelift`'s use case where cross-compilation may be
involved.

* fix lightbeam
2021-07-13 09:52:27 -05:00
Benjamin Bouvier
91c65d739f Remove unused code in machinst 2021-07-02 18:09:33 +02:00
Alex Crichton
aa5d837428 Start a high-level architecture document for Wasmtime (#3019)
* Start a high-level architecture document for Wasmtime

This commit cleands up some existing documentation by removing a number
of "noop README files" and starting a high-level overview of the
architecture of Wasmtime. I've placed this documentation under the
contributing section of the book since it seems most useful for possible
contributors.

I've surely left some things out in this pass, and am happy to add more!

* Review comments

* More rewording

* typos
2021-07-02 09:02:26 -05:00
Alex Crichton
a273add815 Simplify the list of builtin intrinsics Wasmtime needs
This commit slims down the list of builtin intrinsics. It removes the
duplicated intrinsics for imported and locally defined items, instead
always using one intrinsic for both. This was previously inconsistently
applied where some intrinsics got two copies (one for imported one for
local) and other intrinsics got only one copy. This does add an extra
branch in intrinsics since they need to determine whether something is
local or not, but that's generally much lower cost than the intrinsics
themselves.

This also removes the `memory32_size` intrinsic, instead inlining the
codegen directly into the clif IR. This matches what the `table.size`
instruction does and removes the need for a few functions on a
`wasmtime_runtime::Instance`.
2021-06-23 10:30:31 -07:00
Alex Crichton
7ce46043dc Add guard pages to the front of linear memories (#2977)
* Add guard pages to the front of linear memories

This commit implements a safety feature for Wasmtime to place guard
pages before the allocation of all linear memories. Guard pages placed
after linear memories are typically present for performance (at least)
because it can help elide bounds checks. Guard pages before a linear
memory, however, are never strictly needed for performance or features.
The intention of a preceding guard page is to help insulate against bugs
in Cranelift or other code generators, such as CVE-2021-32629.

This commit adds a `Config::guard_before_linear_memory` configuration
option, defaulting to `true`, which indicates whether guard pages should
be present both before linear memories as well as afterwards. Guard
regions continue to be controlled by
`{static,dynamic}_memory_guard_size` methods.

The implementation here affects both on-demand allocated memories as
well as the pooling allocator for memories. For on-demand memories this
adjusts the size of the allocation as well as adjusts the calculations
for the base pointer of the wasm memory. For the pooling allocator this
will place a singular extra guard region at the very start of the
allocation for memories. Since linear memories in the pooling allocator
are contiguous every memory already had a preceding guard region in
memory, it was just the previous memory's guard region afterwards. Only
the first memory needed this extra guard.

I've attempted to write some tests to help test all this, but this is
all somewhat tricky to test because the settings are pretty far away
from the actual behavior. I think, though, that the tests added here
should help cover various use cases and help us have confidence in
tweaking the various `Config` settings beyond their defaults.

Note that this also contains a semantic change where
`InstanceLimits::memory_reservation_size` has been removed. Instead this
field is now inferred from the `static_memory_maximum_size` and guard
size settings. This should hopefully remove some duplication in these
settings, canonicalizing on the guard-size/static-size settings as the
way to control memory sizes and virtual reservations.

* Update config docs

* Fix a typo

* Fix benchmark

* Fix wasmtime-runtime tests

* Fix some more tests

* Try to fix uffd failing test

* Review items

* Tweak 32-bit defaults

Makes the pooling allocator a bit more reasonable by default on 32-bit
with these settings.
2021-06-18 09:57:08 -05:00
Alex Crichton
5140fd251a Update wasm-tools crates (#2989)
* Update wasm-tools crates

This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.

* Fix some wat
2021-06-15 22:56:10 -05:00
Alex Crichton
e8b8947956 Bump to 0.28.0 (#2972) 2021-06-09 14:00:13 -05:00
Alex Crichton
7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00
Benjamin Bouvier
51edea9e57 cranelift: introduce a new WasmtimeAppleAarch64 calling convention
The previous choice to use the WasmtimeSystemV calling convention for
apple-aarch64 devices was incorrect: padding of arguments was
incorrectly computed. So we have to use some flavor of the apple-aarch64
ABI there.

Since we want to support the wasmtime custom convention for multiple
returns on apple-aarch64 too, a new custom Wasmtime calling convention
was introduced to support this.
2021-06-01 17:29:12 +02:00
Olivier Lemasle
33c791e1f5 Add license files
This commit adds LICENSE files to all **published** crates which do
not have it already (most of the crates have it).

Providing the license files is a requiment of the Apache 2.0 License.
2021-05-27 11:56:58 -07:00
Chris Fallin
88455007b2 Bump Wasmtime to v0.27.0 and Cranelift to v0.74.0. 2021-05-20 14:06:41 -07:00
Till Schneidereit
3b3b126fe2 Refer to BA security policy (#2912) 2021-05-19 18:24:42 +02:00
Olivier Lemasle
b5f29bd3b2 Update wasm-tools crates (#2908)
wasmparser 0.78 adds the Unknown name subsection type.
2021-05-17 10:08:17 -05:00
Alex Crichton
195bf0e29a Fully support multiple returns in Wasmtime (#2806)
* Fully support multiple returns in Wasmtime

For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.

The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.

This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.

These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!

Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.

Closes #1178

* Tweak some names and add docs

* "fix" lightbeam compile

* Fix TODO with dummy environ

* Unwind info is a property of the target, not the ABI

* Remove lightbeam unused imports

* Attempt to fix arm64

* Document new ABIs aren't stable

* Fix filetests to use the right target

* Don't always do 64-bit stores with cranelift

This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.

* At least get tests passing on the old backend

* Fix a typo

* Add some filetests with mixed abi calls

* Get `multi` example working

* Fix doctests on old x86 backend

* Add a mixture of wasmtime/system_v tests
2021-04-07 12:34:26 -05:00
Chris Fallin
6bec13da04 Bump versions: Wasmtime to 0.26.0, Cranelift to 0.73.0. 2021-04-05 10:48:42 -07:00
Alex Crichton
211731b876 Update wasm-tools crates (#2773)
Brings in some fuzzing-related bug-fixes
2021-03-25 18:44:31 -05:00
Nick Fitzgerald
d081ef9c2e Bump Wasmtime to 0.25.0; Cranelift to 0.72.0 2021-03-16 11:02:56 -07:00
Dan Gohman
8854dec01d Bump version to 0.24.0
I used a specially modified version of the publish script to avoid
bumping the `witx` version.
2021-03-04 18:17:03 -08:00
Andrew Brown
44e76fe9c0 Update spec tests (#2690)
* Update wasm-tools crates

* Update Wasm SIMD spec tests

* Invert 'experimental_x64_should_panic' logic

By doing this, it is easier to see which spec tests currently panic. The new tests correspond to recently-added instructions.

* Fix: ignore new spec tests for all backends
2021-03-01 16:39:20 -06:00
Ivan Enderlin
012f37e3a9 doc(cranelift) Fix a typo
Hello Cranelfit :-).
2021-03-01 10:06:14 -08:00
Alex Crichton
98d3e6823f Update wasmparser/wat dependencies (#2675)
* Update wasmparser/wat dependencies

Bring in new opcodes and new instructions for SIMD

* Update module linking syntax
2021-02-22 11:56:34 -06:00
Dan Gohman
8d90ea0390 Bump version to 0.23.0
I used a specially modified version of the publish script to avoid
bumping the `witx` version.
2021-02-17 15:35:43 -08:00
Alex Crichton
0e41861662 Implement limiting WebAssembly execution with fuel (#2611)
* Consume fuel during function execution

This commit adds codegen infrastructure necessary to instrument wasm
code to consume fuel as it executes. Currently nothing is really done
with the fuel, but that'll come in later commits.

The focus of this commit is to implement the codegen infrastructure
necessary to consume fuel and account for fuel consumed correctly.

* Periodically check remaining fuel in wasm JIT code

This commit enables wasm code to periodically check to see if fuel has
run out. When fuel runs out an intrinsic is called which can do what it
needs to do in the result of fuel running out. For now a trap is thrown
to have at least some semantics in synchronous stores, but another
planned use for this feature is for asynchronous stores to periodically
yield back to the host based on fuel running out.

Checks for remaining fuel happen in the same locations as interrupt
checks, which is to say the start of the function as well as loop
headers.

* Improve codegen by caching `*const VMInterrupts`

The location of the shared interrupt value and fuel value is through a
double-indirection on the vmctx (load through the vmctx and then load
through that pointer). The second pointer in this chain, however, never
changes, so we can alter codegen to account for this and remove some
extraneous load instructions and hopefully reduce some register
pressure even maybe.

* Add tests fuel can abort infinite loops

* More fuzzing with fuel

Use fuel to time out modules in addition to time, using fuzz input to
figure out which.

* Update docs on trapping instructions

* Fix doc links

* Fix a fuzz test

* Change setting fuel to adding fuel

* Fix a doc link

* Squelch some rustdoc warnings
2021-01-29 08:57:17 -06:00
Yury Delendik
3580205f12 [Cranelift][Atomics] Add address folding for atomic notify/wait. (#2556)
* fold address in wasm wait and notify ops

* add atomics addr folding tests
2021-01-08 11:55:21 -06:00
Nick Fitzgerald
5ad82de3c5 Bump Wasmtime to 0.22.0; Cranelift to 0.69.0 2021-01-07 14:51:12 -08:00
Alex Crichton
9ac7d01288 Implement the module linking alias section (#2451)
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:

* Type contents are now stored separately from a `wasmtime_env::Module`.
  Given that modules can freely alias types and have them used all over
  the place, it seemed best to have one canonical location to type
  storage which everywhere else points to (with indices). A new
  `TypeTables` structure is produced during compilation which is shared
  amongst all member modules in a wasm blob.

* Instantiation is heavily refactored to account for module linking. The
  main gotcha here is that imports are now listed as "initializers". We
  have a sort of pseudo-bytecode-interpreter which interprets the
  initialization of a module. This is more complicated than just
  matching imports at this point because in the module linking proposal
  the module, alias, import, and instance sections may all be
  interleaved. This means that imports aren't guaranteed to show up at
  the beginning of the address space for modules/instances.

Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.

Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.

It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.

cc #2094
2020-12-02 17:24:06 -06:00
Alex Crichton
51c1d4bbd6 Provide filename/line number information in Trap (#2452)
* Provide filename/line number information in `Trap`

This commit extends the `Trap` type and `Store` to retain DWARF debug
information found in a wasm file unconditionally, if it's present. This
then enables us to print filenames and line numbers which point back to
actual source code when a trap backtrace is printed. Additionally the
`FrameInfo` type has been souped up to return filename/line number
information as well.

The implementation here is pretty simplistic currently. The meat of all
the work happens in `gimli` and `addr2line`, and otherwise wasmtime is
just schlepping around bytes of dwarf debuginfo here and there!

The general goal here is to assist with debugging when using wasmtime
because filenames and line numbers are generally orders of magnitude
better even when you already have a stack trace. Another nicety here is
that backtraces will display inlined frames (learned through debug
information), improving the experience in release mode as well.

An example of this is that with this file:

```rust
fn main() {
    panic!("hello");
}
```

we get this stack trace:

```
$ rustc foo.rs --target wasm32-wasi -g
$ cargo run foo.wasm
    Finished dev [unoptimized + debuginfo] target(s) in 0.16s
     Running `target/debug/wasmtime foo.wasm`
thread 'main' panicked at 'hello', foo.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Error: failed to run main module `foo.wasm`

Caused by:
    0: failed to invoke command default
    1: wasm trap: unreachable
       wasm backtrace:
           0: 0x6c1c - panic_abort::__rust_start_panic::abort::h2d60298621b1ccbf
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/panic_abort/src/lib.rs:77:17
                     - __rust_start_panic
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/panic_abort/src/lib.rs:32:5
           1: 0x68c7 - rust_panic
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:626:9
           2: 0x65a1 - std::panicking::rust_panic_with_hook::h2345fb0909b53e12
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:596:5
           3: 0x1436 - std::panicking::begin_panic::{{closure}}::h106f151a6db8c8fb
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:506:9
           4:  0xda8 - std::sys_common::backtrace::__rust_end_short_backtrace::he55aa13f22782798
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/sys_common/backtrace.rs:153:18
           5: 0x1324 - std::panicking::begin_panic::h1727e7d1d719c76f
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:505:12
           6:  0xfde - foo::main::h2db1313a64510850
                           at /Users/acrichton/code/wasmtime/foo.rs:2:5
           7: 0x11d5 - core::ops::function::FnOnce::call_once::h20ee1cc04aeff1fc
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:227:5
           8:  0xddf - std::sys_common::backtrace::__rust_begin_short_backtrace::h054493e41e27e69c
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/sys_common/backtrace.rs:137:18
           9: 0x1d5a - std::rt::lang_start::{{closure}}::hd83784448d3fcb42
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:66:18
          10: 0x69d8 - core::ops::function::impls::<impl core::ops::function::FnOnce<A> for &F>::call_once::h564d3dad35014917
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:259:13
                     - std::panicking::try::do_call::hdca4832ace5a8603
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:381:40
                     - std::panicking::try::ha8624a1a6854b456
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:345:19
                     - std::panic::catch_unwind::h71421f57cf2bc688
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panic.rs:382:14
                     - std::rt::lang_start_internal::h260050c92cd470af
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:51:25
          11: 0x1d0c - std::rt::lang_start::h0b4bcf3c5e498224
                           at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:65:5
          12:  0xffc - <unknown>!__original_main
          13:  0x393 - __muloti4
                           at /cargo/registry/src/github.com-1ecc6299db9ec823/compiler_builtins-0.1.35/src/macros.rs:269
```

This is relatively noisy by default but there's filenames and line
numbers! Additionally frame 10 can be seen to have lots of frames
inlined into it. All information is always available to the embedder but
we could try to handle the `__rust_begin_short_backtrace` and
`__rust_end_short_backtrace` markers to trim the backtrace by default as
well.

The only gotcha here is that it looks like `__muloti4` is out of place.
That's because the libc that Rust ships with doesn't have dwarf
information, although I'm not sure why we land in that function for
symbolizing it...

* Add a configuration switch for debuginfo

* Control debuginfo by default with `WASM_BACKTRACE_DETAILS`

* Try cpp_demangle on demangling as well

* Rename to WASMTIME_BACKTRACE_DETAILS
2020-12-01 16:56:23 -06:00
Chris Fallin
c19762d5c2 Merge pull request #2354 from uweigand/fix-builtinuext
Add extension marker to i32 arguments of builtin functions
2020-11-12 12:27:44 -08:00
bjorn3
b7a93c2321 Remove reloc_block
It isn't called and all reloc sinks either ignore it or panic when it is
called.
2020-11-11 12:36:17 +01:00
Alex Crichton
73cda83548 Propagate module-linking types to wasmtime (#2115)
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.

One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
2020-11-06 14:48:09 -06:00
Alex Crichton
77827a48a9 Start compiling module-linking modules (#2093)
This commit is intended to be the first of many in implementing the
module linking proposal. At this time this builds on #2059 so it
shouldn't land yet. The goal of this commit is to compile bare-bones
modules which use module linking, e.g. those with nested modules.

My hope with module linking is that almost everything in wasmtime only
needs mild refactorings to handle it. The goal is that all per-module
structures are still per-module and at the top level there's just a
`Vec` containing a bunch of modules. That's implemented currently where
`wasmtime::Module` contains `Arc<[CompiledModule]>` and an index of
which one it's pointing to. This should enable
serialization/deserialization of any module in a nested modules
scenario, no matter how you got it.

Tons of features of the module linking proposal are missing from this
commit. For example instantiation flat out doesn't work, nor does
import/export of modules or instances. That'll be coming as future
commits, but the purpose here is to start laying groundwork in Wasmtime
for handling lots of modules in lots of places.
2020-11-06 13:32:30 -06:00
Alex Crichton
ab1958434a Bump to 0.21.0 (#2359) 2020-11-05 09:39:53 -06:00
Alex Crichton
6b137c2a3d Move native signatures out of Module (#2362)
After compilation there's actually no need to hold onto the native
signature for a wasm function type, so this commit moves out the
`ir::Signature` value from a `Module` into a separate field that's
deallocated when compilation is finished. This simplifies the
`SignatureRegistry` because it only needs to track wasm functino types
and it also means less work is done for `Func::wrap`.
2020-11-04 14:22:37 -06:00
Ulrich Weigand
56caf1b29a Add extension marker to i32 arguments of builtin functions
Some platform ABIs require i32 values to be zero- or sign-extended
to the full register width.  The extension is implemented by the
cranelift codegen backend, but this happens only if the appropriate
"uext" or "sext" attribute is present in the cranelift IR.

For calls to builtin functions, that IR is synthesized by the code
in func_environ.rs -- to ensure correct codegen for the target ABI,
this code needs to add those attributes as necessary.
2020-11-03 16:22:20 +01:00
Alex Crichton
10b5cc50c3 Further compress the in-memory representation of address maps (#2324)
This commit reduces the size of `InstructionAddressMap` from 24 bytes to
8 bytes by dropping the `code_len` field and reducing `code_offset` to
`u32` instead of `usize`. The intention is to primarily make the
in-memory version take up less space, and the hunch is that the
`code_len` is largely not necessary since most entries in this map are
always adjacent to one another. The `code_len` field is now implied by
the `code_offset` field of the next entry in the map.

This isn't as big of an improvement to serialized module size as #2321
or #2322, primarily because of the switch to variable-length encoding.
Despite this though it shaves about 10MB off the encoded size of the
module from #2318
2020-11-02 20:37:18 -06:00
Alex Crichton
372ae2aeb6 Fix a panic in table-ops translation (#2350)
This fixes an issue where `ensure_inserted_block()` wasn't called before
we do some block manipulation in the Wasmtime translation of some
table-related instructions. It looks like `ensure_inserted_block()` is
otherwise called on most instructions being added, so we just need to
call it explicitly it seems here.

Closes #2347
2020-11-02 17:53:43 -06:00
Alex Crichton
3461ffa563 Remove source_loc from TrapInformation (#2325)
Turns out this wasn't needed anywhere! Additionally we can construct it
from `InstructionAddressMap` anyway. There's so many pieces of trap
information that it's best to keep these structures small as well.
2020-10-28 13:05:05 -05:00
Alex Crichton
f6d5b8772c Compress in-memory representation of FunctionAddressMap (#2321)
This commit compresses `FunctionAddressMap` by performing a simple
coalescing of adjacent `InstructionAddressMap` descriptors if they
describe the same source location. This is intended to handle the common
case where a sequene of machine instructions describes a high-level wasm
instruction.

For the module on #2318 this reduces the cache entry size from 306MB to
161MB.
2020-10-26 13:22:25 -05:00
Alex Crichton
e659d5cecd Add initial support for the multi-memory proposal (#2263)
This commit adds initial (gated) support for the multi-memory wasm
proposal. This was actually quite easy since almost all of wasmtime
already expected multi-memory to be implemented one day. The only real
substantive change is the `memory.copy` intrinsic changes, which now
accounts for the source/destination memories possibly being different.
2020-10-13 19:13:52 -05:00
Alex Crichton
2c6841041d Validate modules while translating (#2059)
* Validate modules while translating

This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.

Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.

This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!

* Read function operators until EOF

This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
2020-10-05 11:02:01 -05:00
Alex Crichton
5e08eb3b83 Bump wasmtime to 0.20.0 (#2222)
At the same time bump cranelift crates to 0.67.0
2020-09-23 13:54:02 -05:00
Alex Crichton
693c6ea771 wasmtime: Extract cranelift/lightbeam compilers to separate crates (#2117)
This commit extracts the two implementations of `Compiler` into two
separate crates, `wasmtime-cranelfit` and `wasmtime-lightbeam`. The
`wasmtime-jit` crate then depends on these two and instantiates them
appropriately. The goal here is to start reducing the weight of the
`wasmtime-environ` crate, which currently serves as a common set of
types between all `wasmtime-*` crates. Long-term I'd like to remove the
dependency on Cranelift from `wasmtime-environ`, but that's going to
take a lot more work.

In the meantime I figure it's a good way to get started by separating
out the lightbeam/cranelift function compilers from the
`wasmtime-environ` crate. We can continue to iterate on moving things
out in the future, too.
2020-08-20 11:34:31 +02:00