* wasm testsuite: ignore hidden files in test dir
and report a rejected file. it was picking up vim .swp files
* wasmtests: correct wat syntax in icall.wat
This was supposed to be Q3 + 1.5 IQR, but a braino meant we actually used
Q3 + 2/3 IQR.
Since the distribution of test case times is far from gaussian, bump the
"slow" limit up even further to Q3 + 3 IQR.
This reverts commit 0538615ccc0b600d4f534dae2ee966d5ed0df9b7.
Fixes#196. The pager functionality wasn't working as intended since
long error messages appear on stdout which isn't captured by the pager.
Define two public iterator types in the flowgraph module, PredIter and
SuccIter, which are by-value iterators over an EBB's predecessors and
successors respectively.
Provide matching pred_iter() and succ_iter() methods for inspecting the
CFG. Remove the get_predecessors() method which returned a slice.
Update the uses of get_predecessors(), none of which depended on it
being a slice.
This abstraction makes it possible to change the internal representation
of the CFG.
The control flow graph does not guarantee any particular ordering for
its successor lists, and the post-order we are computing for building
the dominator tree needs to be "split-invariant".
See #146 for details.
- Discover EBB successors directly from the EBB instruction sequence to
guarantee that the post-order we compute is canonical/split-invariant.
- Use an alternative graph DFS algorithm which doesn't require indexing
into a slice of successors.
This changes cfg_postorder in some cases because the edge pruning when
converting the (DAG) CFG to a tree for the DFT is different.
These tests were only using "test compile" because it doesn't require
any filecheck directives to be present, so just stop requiring filecheck
directives for "test regalloc" and other filecheck-based test drivers.
Fixes#178.
When an instruction with a fixed output operand defines a globally live
SSA value, we need to check if the fixed register is available in the
`regs.global` set of registers that can be used across EBB boundaries.
If the fixed output register is not available in regs.global, set the
replace_global_defines flag so the output operands are rewritten as
local values.
Fixes#175.
The Intel division instructions have fixed input operands that are
clobbered by fixed output operands, so the value passed as an input will
be clobbered just like a tied operand.
The FixedTied operand constraint is used to indicate a fixed input
operand that has a corresponding output operand with the same fixed
register.
Teach the spiller to teach a FixedTied operand the same as a Tied
operand constraint and make sure that the input value is killed by the
instruction.
`stack_addr` and unrestricted loads and stores *can* be used with entirely
defined behavior. The sense in which they're not "safe" is only that it's
possible to misuse them. This subtlety wasn't captured in the definition
of "safe" here, so for now, just remove the definition so that it doesn't
cause confusion.
* Clarify undefined behavior and notrap.
Remove the "No undefined behavior" paragraph from the README. The other
paragraphs, specifically "Portable semantics" and
"Fast sandbox verification", describe Cretonne's goals in this area.
Define *addressable* and *accessible* memory, so that trapping remains a fully defined part of the semantics, and we have a clear boundary around undefined behavior, and use these terms to describe related constructs.
Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.
- Replace "ebb_arg" with "ebb_param" in function names that deal with
EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.
No functional changes intended.
This allows GVN to avoid hoisting them. These will be to coarse for
things that want more precise dependence information, however we can
work that out when we build such things.
Add integer and floating comparison instructions that return CPU flags:
ifcmp, ifcmp_imm, and ffcmp.
Add conditional branch instructions that check CPU flags: brif, brff
Add instructions that check a condition in the CPU flags and return a
b1: trueif, trueff.
These two value types represent the state of CPU flags after an integer
comparison and a floating point comparison respectively.
Instructions using these types TBD.
The value types are now classified into three groups:
1. Lane types are scalar types that can also be used to form vectors.
2. Vector types 2-256 copies of a lane type.
3. Special types. This is where the CPU flag types will go.
The special types can't be used to form vectors.
Change the numbering scheme for value types to make room for the special
types and add `is_lane()` and `is_special()` classification methods.
The VOID type still has number 0, but it can no longer appear as a
vector lane. It classifies as special now.