This introduces two changes:
- first, a Cargo feature is added to make it possible to use the
Cranelift x64 backend directly from wasmtime's CLI.
- second, when passing a `cranelift-flags` parameter, and the given
parameter's name doesn't exist at the target-independent flag level, try
to set it as a target-dependent setting.
These two changes make it possible to try out the new x64 backend with:
cargo run --features experimental_x64 -- run --cranelift-flags use_new_backend=true -- /path/to/a.wasm
Right now, this will fail because most opcodes required by the
trampolines are actually not implemented yet.
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.
When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.
The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.
When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).
For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf
cc #929Fixes#1804
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
There was a bug how value labels were resolved, which caused some DWARF expressions not be transformed, e.g. those are in the registers.
* Implements FIXME in expression.rs
* Move TargetIsa from CompiledExpression structure
* Fix expression format for GDB
* Add tests for parsing
* Proper logic in ValueLabelRangesBuilder::process_label
* Tests for ValueLabelRangesBuilder
* Refactor build_with_locals to return Iterator instead of Vec<_>
* Misc comments and magical numbers
This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
This exposes the functionality of `fde::map_reg` on the `TargetIsa` trait, avoiding compilation errors on architectures where register mapping is not yet supported. The change is conditially compiled under the `unwind` feature.
Both cranelift-codegen and wasmtime-debug need to map Cranelift registers to Gimli registers. Previously both crates had an almost-identical `map_reg` implementation. This change:
- removes the wasmtime-debug implementation
- improves the cranelift-codegen implementation with custom errors
- exposes map_reg in `cranelift_codegen::isa::fde::map_reg` and subsequently `wasmtime_environ::isa::fde::map_reg`
* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
* rename PassiveElemIndex to ElemIndex and same for PassiveDataIndex (#1411)
* rename PassiveDataIndex to DataIndex
* rename PassiveElemIndex to ElemIndex
* Apply renamings to wasmtime as well
* Run rustfmt
Co-authored-by: csmoe <csmoe@msn.com>
* Remove the `Flags` type from `Config` API
This commit removes the final foreign type from the `Config` API in the
`wasmtime` crate. The cranelift `Flags` type is now expanded into
various options on the `Config` structure itself, all prefixed with
`cranelift_` since they're only relevant to the Cranelift backend. The
various changes here were:
* The `avoid_div_traps` feature is enabled by default since it seemed
that was done anywhere anyway.
* Enabling the wasm SIMD feature enables the requisite features in
Cranelift as well.
* A method for enabling the debug verifier has been added.
* A method for configuring the Cranelift optimization level, as well as
a corresponding enumeration, has been added.
* Assert that `Config` is both `Send` and `Sync`