Commit Graph

11 Commits

Author SHA1 Message Date
Johnnie Birch
48f0b10c7a Add initial scalar FP operations (addss, subss, etc) to x64 backend.
Adds support for addss and subss. This is the first lowering for
sse floating point alu and some move operations. The changes here do
some renaming of data structures and adds a couple of new ones
to support sse specific operations. The work done here will likely
evolve as needed to support an efficient, inituative, and consistent
framework.
2020-06-10 18:36:57 +02:00
Chris Fallin
fc2a6f273b Three fixes to various SpiderMonkey-related issues:
- Properly mask constant values down to appropriate width when
  generating a constant value directly in aarch64 backend. This was a
  miscompilation introduced in the new-isel refactor. In combination
  with failure to respect NarrowValueMode, this resulted in a very
  subtle bug when an `i32` constant was used in bit-twiddling logic.

- Add support for `iadd_ifcout` in aarch64 backend as used in explicit
  heap-check mode. With this change, we no longer fail heap-related
  tests with the huge-heap-region mode disabled.

- Remove a panic that was occurring in some tests that are currently
  ignored on aarch64, by simply returning empty/default information in
  `value_label` functionality rather than touching unimplemented APIs.
  This is not a bugfix per-se, but removes confusing panic messages from
  `cargo test` output that might otherwise mislead.
2020-06-08 13:02:00 -07:00
Chris Fallin
fe97659813 Address review comments. 2020-06-03 13:31:34 -07:00
Chris Fallin
615362068f Multi-value return support. 2020-06-03 13:31:34 -07:00
Chris Fallin
c9e3b71c39 Merge pull request #1729 from cfallin/machinst-branch-opt
Fix MachBuffer branch optimization.
2020-05-20 14:43:57 -07:00
Benjamin Bouvier
1f620e1b46 cranelift: bump regalloc.rs to 0.0.24 and adapt to latest API changes; 2020-05-20 15:37:15 +02:00
Chris Fallin
e11094b28b Fix MachBuffer branch optimization.
This patch fixes a subtle bug that occurred in the MachBuffer branch
optimization: in tracking labels at the current buffer tail using a
sorted-by-offset array, the code did not update this array properly when
redirecting labels. As a result, the dead-branch removal was unsafe,
because not every label pointing to a branch is guaranteed to be
redirected properly first.

Discovered while doing performance testing: bz2 silently took a wrong
branch and exited compression early. (Eek!)

To address this problem, this patch adopts a slightly simpler data
structure: we only track the labels *at the current buffer tail*, and
*at the start of each branch*, and we're careful to update these
appropriately to maintain the invariants. I'm pretty confident that this
is correct now, but we should (still) fuzz it a bunch, because wrong
control flow scares me a nonzero amount. I should probably also actually
write out a formal proof that these data-structure updates are correct.
The optimizations are important for performance (removing useless empty
blocks, and taking advantage of any fallthrough opportunities at all),
so I don't think we would want to drop them entirely.
2020-05-19 18:09:18 -07:00
Chris Fallin
687aca00fe Update x64 backend to use new lowering APIs. 2020-05-18 16:25:15 -07:00
Chris Fallin
17cef9140c MachInst backend: don't reallocate RealRegUniverses for each function
compilation.

This saves ~0.14% instruction count, ~0.18% allocated bytes, and ~1.5%
allocated blocks on a `clif-util wasm` compilation of `bz2.wasm` for
aarch64.
2020-05-08 15:35:16 -07:00
Chris Fallin
a66724aafd Rework aarch64 stack frame implementation.
This PR changes the aarch64 ABI implementation to use positive offsets
from SP, rather than negative offsets from FP, to refer to spill slots
and stack-local storage. This allows for better addressing-mode options,
and hence slightly better code: e.g., the unsigned scaled 12-bit offset
mode can be used to reach anywhere in a 32KB frame without extra
address-construction instructions, whereas negative offsets are limited
to a signed 9-bit unscaled mode (-256 bytes).

To enable this, the PR introduces a notion of "nominal SP offsets" as a
virtual addressing mode, lowered during the emission pass. The offsets
are relative to "SP after adjusting downward to allocate stack/spill
slots", but before pushing clobbers. This allows the addressing-mode
expressions to be generated before register allocation (or during it,
for spill/reload sequences).

To convert these offsets into *true* offsets from SP, we need to track
how much further SP is moved downward, and compensate for this. We do so
with "virtual SP offset adjustment" pseudo-instructions: these are seen
by the emission pass, and result in no instruction (0 byte output), but
update state that is now threaded through each instruction emission in
turn. In this way, we can push e.g. stack args for a call and adjust
the virtual SP offset, allowing reloads from nominal-SP-relative
spillslots while we do the argument setup with "real SP offsets" at the
same time.
2020-05-06 09:23:55 -07:00
Benjamin Bouvier
fa54422854 Add a work-in-progress backend for x86_64 using the new instruction selection;
Most of the work is credited to Julian Seward.

Co-authored-by: Julian Seward <jseward@acm.org>
Co-authored-by: Chris Fallin <cfallin@mozilla.com>
2020-05-05 16:35:41 +02:00