- Handle call instructions' clobbers with the clobbers API, using RA2's
clobbers bitmask (bytecodealliance/regalloc2#58) rather than clobbers
list;
- Pull in changes from bytecodealliance/regalloc2#59 for much more sane
edge-case behavior w.r.t. liverange splitting.
RA2 recently removed the need for a dedicated scratch register for
cyclic moves (bytecodealliance/regalloc2#51). This has moderate positive
performance impact on function bodies that were register-constrained, as
it means that one more register is available. In Sightglass, I measured
+5-8% on `blake3-scalar`, at least among current benchmarks.
This PR switches Cranelift over to the new register allocator, regalloc2.
See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.
Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:
```
Benchmark Compilation (wallclock) Execution (wallclock)
blake3-scalar 25% faster 28% faster
blake3-simd no diff no diff
meshoptimizer 19% faster 17% faster
pulldown-cmark 17% faster no diff
bz2 15% faster no diff
SpiderMonkey, 21% faster 2% faster
fib(30)
clang.wasm 42% faster N/A
```
This adds support for the "fastcall" ABI, which is the native C/C++ ABI
on Windows platforms on x86-64. It is similar to but not exactly like
System V; primarily, its argument register assignments are different,
and it requires stack shadow space.
Note that this also adjusts the handling of multi-register values in the
shared ABI implementation, and with this change, adjusts handling of
`i128`s on *both* Fastcall/x64 *and* SysV/x64 platforms. This was done
to align with actual behavior by the "rustc ABI" on both platforms, as
mapped out experimentally (Compiler Explorer link in comments). This
behavior is gated under the `enable_llvm_abi_extensions` flag.
Note also that this does *not* add x64 unwind info on Windows. That will
come in a future PR (but is planned!).
The x64 backend currently builds the `RealRegUniverse` in a way that
is generating somewhat suboptimal code. In many blocks, we see uses of
callee-save (non-volatile) registers (r12, r13, r14, rbx) first, even in
very short leaf functions where there are plenty of volatiles to use.
This is leading to unnecessary spills/reloads.
On one (local) test program, a medium-sized C benchmark compiled to Wasm
and run on Wasmtime, I am seeing a ~10% performance improvement with
this change; it will be less pronounced in programs with high register
pressure (there we are likely to use all registers regardless, so the
prologue/epilogue will save/restore all callee-saves), or in programs
with fewer calls, but this is a clear win for small functions and in
many cases removes prologue/epilogue clobber-saves altogether.
Separately, I think the RA's coalescing is tripping up a bit in some
cases; see e.g. the filetest touched by this commit that loads a value
into %rsi then moves to %rax and returns immediately. This is an
orthogonal issue, though, and should be addressed (if worthwhile) in
regalloc.rs.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.
In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).
Fixes#2254.
This change is a pure refactoring--no change to functionality. It removes newlines between the `use ...` statements in the x64 backend so that rustfmt can format them according to its convention. I noticed some files had followed a manual convention but subsequent additions did not seem to fit; this change fixes that and lightly coalesces some of the occurrences of `use a::b; use a::c;` into `use::{b, c}`.
Adds support for addss and subss. This is the first lowering for
sse floating point alu and some move operations. The changes here do
some renaming of data structures and adds a couple of new ones
to support sse specific operations. The work done here will likely
evolve as needed to support an efficient, inituative, and consistent
framework.