Commit Graph

1724 Commits

Author SHA1 Message Date
Alex Crichton
503129ad91 Add a method to share Config across machines (#2608)
With `Module::{serialize,deserialize}` it should be possible to share
wasmtime modules across machines or CPUs. Serialization, however, embeds
a hash of all configuration values, including cranelift compilation
settings. By default wasmtime's selection of the native ISA would enable
ISA flags according to CPU features available on the host, but the same
CPU features may not be available across two machines.

This commit adds a `Config::cranelift_clear_cpu_flags` method which
allows clearing the target-specific ISA flags that are automatically
inferred by default for the native CPU. Options can then be
incrementally built back up as-desired with teh `cranelift_other_flag`
method.
2021-01-26 15:59:12 -06:00
Chris Fallin
f54d0d05c7 Address review comments. 2021-01-22 16:02:29 -08:00
Chris Fallin
7e12abce71 Fix a few comment typos and add a clarifying comment. 2021-01-21 16:01:46 -08:00
Chris Fallin
997fab55d5 Skip value-label analysis if no value labels are present. 2021-01-21 15:59:52 -08:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
bjorn3
81d248c057 Implement Mach-O TLS access for x64 newBE 2021-01-21 18:25:56 +01:00
Anton Kirilov
043a8434d2 Cranelift AArch64: Improve the Popcnt implementation
Now the backend uses the CNT instruction, which results into a major
simplification.

Copyright (c) 2021, Arm Limited.
2021-01-19 16:49:47 +00:00
Chris Fallin
c7de8f5efb Merge pull request #2541 from cfallin/struct-arg-ret
x64 and aarch64: allow StructArgument and StructReturn args.
2021-01-17 23:50:19 -08:00
Chris Fallin
456561f431 x64 and aarch64: allow StructArgument and StructReturn args.
The StructReturn ABI is fairly simple at the codegen/isel level: we only
need to take care to return the sret pointer as one of the return values
if that wasn't specified in the initial function signature.

Struct arguments are a little more complex. A struct argument is stored
as a chunk of memory in the stack-args space. However, the CLIF
semantics are slightly special: on the caller side, the parameter passed
in is a pointer to an arbitrary memory block, and we must memcpy this
data to the on-stack struct-argument; and on the callee side, we provide
a pointer to the passed-in struct-argument as the CLIF block param
value.

This is necessary to support various ABIs other than Wasm, such as that
of Rust (with the cg_clif codegen backend).
2021-01-17 23:11:45 -08:00
Chris Fallin
0f563f786a Add ELF TLS support in new x64 backend.
This follows the implementation in the legacy x86 backend, including
hardcoded sequence that is compatible with what the linker expects. We
could potentially do better here, but it is likely not necessary.

Thanks to @bjorn3 for a bugfix to an earlier version of this.
2021-01-17 22:48:51 -08:00
Chris Fallin
71ead6e31d x64 backend: implement 128-bit ops and misc fixes.
This implements all of the ops on I128 that are implemented by the
legacy x86 backend, and includes all that are required by at least one
major use-case (cg_clif rustc backend).

The sequences are open-coded where necessary; for e.g. the bit
operations, this can be somewhat complex, but these sequences have been
tested carefully. This PR also includes a drive-by fix of clz/ctz for 8-
and 16-bit cases where they were incorrect previously.

Also includes ridealong fixes developed while bringing up cg_clif
support, because they are difficult to completely separate due to
other refactors that occurred in this PR:

- fix REX prefix logic for some 8-bit instructions.

  When using an 8-bit register in 64-bit mode on x86-64, the REX prefix
  semantics are somewhat subtle: without the REX prefix, register numbers
  4--7 correspond to the second-to-lowest byte of the first four registers
  (AH, CH, BH, DH), whereas with the REX prefix, these register numbers
  correspond to the usual encoding (SPL, BPL, SIL, DIL). We could always
  emit a REX byte for instructions with 8-bit cases (this is harmless even
  if unneeded), but this would unnecessarily inflate code size; instead,
  the usual approach is to emit it only for these registers.

  This logic was present in some cases but missing for some other
  instructions: divide, not, negate, shifts.

  Fixes #2508.

- avoid unaligned SSE loads on some f64 ops.

  The implementations of several FP ops, such as fabs/fneg, used SSE
  instructions. This is not a problem per-se, except that load-op merging
  did not take *alignment* into account. Specifically, if an op on an f64
  loaded from memory happened to merge that load, and the instruction into
  which it was merged was an SSE instruction, then the SSE instruction
  imposes stricter (128-bit) alignment requirements than the load.f64 did.

  This PR simply forces any instruction lowerings that could use SSE
  instructions to implement non-SIMD operations to take inputs in
  registers only, and avoid load-op merging.

  Fixes #2507.

- two bugfixes exposed by cg_clif: urem/srem.i8, select.b1.

  - urem/srem.i8: the 8-bit form of the DIV instruction on x86-64 places
    the remainder in AH, not RDX, different from all the other width-forms
    of this instruction.

  - select.b1: we were not recognizing selects of boolean values as
    integer-typed operations, so we were generating XMM moves instead (!).
2021-01-14 13:45:50 -08:00
Johnnie Birch
d17815a239 Zero newly allocated registers whose immediate use depends on content not being NaN
An intermittent failure during SIMD spectests is described in #2432. This patch
corrects code written in a way that assumes comparing fp equality of a register with itself will
always return true. This is not true when the register value is NaN as NaN. In this case, and
with all ordered comparisons involving NaN, the comparisons will always return false.
This patch corrects that assumption for SIMD Fabs and Fneg which seem to be the only
instructions generating the failure with #2432.
2021-01-13 19:44:00 -08:00
Chris Fallin
4638de673c x64 bugfix: prevent load-op fusion of cmp because it could be emitted multiple times.
On x64, the new backend generates `cmp` instructions at their use-sites
when possible (when the icmp that generates a boolean is known) so that
the condition flows directly through flags rather than a materialized
boolean. E.g., both `bint` (boolean to int) and `select` (conditional
select) instruction lowerings invoke `emit_cmp()` to do so.

Load-op fusion in `emit_cmp()` nominally allowed `cmp` to use its `cmp
reg, mem` form.

However, the mergeable-load condition (load has only single use) was not
adequately checked. Consider the sequence:

```
    v2 = load.i64 v1
    v3 = icmp eq v0, v2
    v4 = bint.i64 v3
    v5 = select.i64 v3, v0, v1
```

The load `v2` is only used in the `icmp` at `v3`. However, the cmp will
be separately codegen'd twice, once for the `bint` and once for the
`select`.

Prior to this fix, the above example would result in the load at `v2`
sinking to the `cmp` just above the `select`; we then emit another `cmp`
for the `bint`, but the load has already been used once so we do not
allow merging. We thus (i) expect the register for `v2` to contain the
loaded value, but (ii) skip the codegen for the load because it has been
sunk. This results in a regalloc error (unexpected livein) as the
unfilled register is upward-exposed to the entry point.

Because of this, we need to accept only the reg, reg form in
`emit_cmp()` (and the FP equivalent). We could get marginally better
code by tracking whether the `cmp` we are emitting comes from an
`icmp`/`fcmp` with only one use; but IMHO simplicity is a better rule
here when subtle interactions occur.
2021-01-13 09:48:51 -08:00
Chris Fallin
b4426be072 machinst lowering: update inst color when scanning across branch to allow more load-op merging.
A branch is considered side-effecting and so updates the instruction
color (which is our way of computing how far instructions can sink).
However, in the lowering loop, we did not update current instruction
color when scanning backward across branches, which are side-effecting.
As a result, the color was stale and fewer load-op merges were permitted
than are actually possible.

Note that this would not have resulted in any correctness issues, as the
stale color is too high (so no merges are permitted that should have
been disallowed).

Fixes #2562.
2021-01-11 11:20:44 -08:00
Andrew Brown
b25a3c387e fix: dst should be Writable, not ValueRegs 2021-01-08 16:49:28 -08:00
Andrew Brown
09a5b91b9d x64: make several structures debuggable 2021-01-08 16:21:57 -08:00
Andrew Brown
bb2dd5b68b [machinst x64]: implement load*_zero for x64 2021-01-08 16:21:57 -08:00
Chris Fallin
81bc811236 Merge pull request #2558 from cfallin/pic-symbol-refs
x64: support PC-rel symbol references using the GOT when in PIC mode.
2021-01-08 10:03:10 -08:00
Chris Fallin
3ee898cb2c x64: support PC-rel symbol references using the GOT when in PIC mode. 2021-01-07 22:46:56 -08:00
Chris Fallin
6eea015d6c Multi-register value support: framework for Values wider than machine regs.
This will allow for support for `I128` values everywhere, and `I64`
values on 32-bit targets (e.g., ARM32 and x86-32). It does not alter the
machine backends to build such support; it just adds the framework for
the MachInst backends to *reason* about a `Value` residing in more than
one register.
2021-01-05 17:45:02 -08:00
Nick Fitzgerald
6317290a1d Merge pull request #2548 from cfallin/fix-aarch64-sp
aarch64: fix reg/imm `sub` insts that read `SP`, not the zero register.
2021-01-05 16:38:25 -08:00
Chris Fallin
aac3751025 aarch64: fix reg/imm sub insts that read SP, not the zero register.
On AArch64, the zero register (xzr) and the stack pointer (xsp) are
alternately named by the same index `31` in machine code depending on
context. In particular, in the reg-reg-immediate ALU instruction form,
add/subtract will use the stack pointer, not the zero register, if index
31 is given for the first (register) source arg.

In a few places, we were emitting subtract instructions with the zero
register as an argument and a reg/immediate as the second argument. When
an immediate could be incorporated directly (we have the `iconst`
definition visible), this would result in incorrect code being
generated.

This issue was found in `ineg` and in the sequence for vector
right-shifts.

Reported by Ian Cullinan; thanks!
2021-01-05 15:48:07 -08:00
Chris Fallin
dbd2241b60 x64: handle tests of b1 values correctly (only LSB is defined).
Previously, `select` and `brz`/`brnz` instructions, when given a `b1`
boolean argument, would test whether that boolean argument was nonzero,
rather than whether its LSB was nonzero. Since our invariant for mapping
CLIF state to machine state is that bits beyond the width of a value are
undefined, the proper lowering is to test only the LSB.

(aarch64 does not have the same issue because its `Extend` pseudoinst
already properly handles masking of b1 values when a zero-extend is
requested, as it is for select/brz/brnz.)

Found by Nathan Ringo on Zulip [1] (thanks!).

[1]
https://bytecodealliance.zulipchat.com/#narrow/stream/217117-cranelift/topic/bnot.20on.20b1s
2021-01-05 14:45:46 -08:00
Yury Delendik
2964023a77 [SIMD][x86_64] Add encoding for PMADDWD (#2530)
* [SIMD][x86_64] Add encoding for PMADDWD

* also for "experimental_x64"
2020-12-24 07:52:50 -06:00
Johnnie Birch
f705a72aeb Refactor packed moves to use xmm_mov instead of xmm_rm_r
Refactors previous packed move implementation to use xmm_mov
instead of xmm_rm_r which looks to simplify register accounting
during lowering.
2020-12-16 17:13:27 -08:00
Johnnie Birch
51973aefbb Implements x64 SIMD loads for the new backend. 2020-12-16 17:13:27 -08:00
Chris Fallin
e91987c43c Allow both x86 backends to be included, selected with a "variant" flag. (#2514)
This PR adds a new `isa::lookup_variant()` that takes a `BackendVariant`
(`Legacy`, `MachInst` or `Any`), and exposes both x86 backends as
separate variants if both are compiled into the build.

This will allow some new use-cases that require both backends in the
same process: for example, differential fuzzing between old and new
backends, or perhaps allowing for dynamic feature-flag selection between
the backends.
2020-12-16 09:56:04 -06:00
Chris Fallin
743529b4eb Merge pull request #2492 from uweigand/endian-memory-v5
Support explicit endianness in Cranelift IR MemFlags
2020-12-14 13:59:08 -08:00
Ulrich Weigand
467a1af83a Support explicit endianness in Cranelift IR MemFlags
WebAssembly memory operations are by definition little-endian even on
big-endian target platforms.  However, other memory accesses will require
native target endianness (e.g. to access parts of the VMContext that is
also accessed by VM native code).  This means on big-endian targets,
the code generator will have to handle both little- and big-endian
memory accesses.  However, there is currently no way to encode that
distinction into the Cranelift IR that describes memory accesses.

This patch provides such a way by adding an (optional) explicit
endianness marker to an instance of MemFlags.  Since each Cranelift IR
instruction that describes memory accesses already has an instance of
MemFlags attached, this can now be used to provide endianness
information.

Note that by default, memory accesses will continue to use the native
target ISA endianness.  To override this to specify an explicit
endianness, a MemFlags value that was built using the set_endianness
routine must be used.  This patch does so for accesses that implement
WebAssembly memory operations.

This patch addresses issue #2124.
2020-12-14 20:15:37 +01:00
Chris Fallin
267d4a8bdb Merge pull request #2490 from cfallin/fix-popcnt-load-width
x64 lowering fix: i32.popcnt should not merge load and make it 64-bit.
2020-12-08 22:28:41 -08:00
Y-Nak
855a6374dd Fix missing modification of jump table in licm 2020-12-09 11:13:33 +09:00
Chris Fallin
6632c45c01 x64 lowering fix: i32.popcnt should not merge load and make it 64-bit.
As a subtle consequence of the recent load-op fusion, popcnt of a
value that came from a load.i32 was compiling into a 64-bit load. This
is a result of the way in which x86 infers the width of loads: it is a
consequence of the instruction containing the memory reference, not the
memory reference itself. So the `input_to_reg_mem()` helper (convert an
instruction input into a register or memory reference) was providing the
appropriate memory reference for the result of a load.i32, but never
encoded the assumption that it would only be used in a 32-bit
instruction. It turns out that popcnt.i32 uses a 64-bit instruction to
load this RM op, hence widening a 32-bit to 64-bit load (which is
problematic when the offset is (memory_length - 4)).

Separately, popcnt was using the RM operand twice, resulting in two
loads if we merged a load. This isn't a correctness bug in practice
because only a racy sequence (store interleaving between the loads)
would produce incorrect results, but we decided earlier to treat loads
as effectful for now, neither reordering nor duplicating them, to
deliberately reduce complexity.

Because of the second issue, the fix is just to force the operand into a
register always, so any source load will not be merged.

Discovered via fuzzing with oss-fuzz.
2020-12-08 12:24:34 -08:00
Chris Fallin
2cec20aa57 Merge pull request #2486 from cfallin/fix-probestack
Two Lucet-related fixes to stack overflow handling.
2020-12-07 16:47:37 -08:00
Chris Fallin
3a01d14712 Two Lucet-related fixes to stack overflow handling.
Lucet uses stack probes rather than explicit stack limit checks as
Wasmtime does. In bytecodealliance/lucet#616, I have discovered that I
previously was not running some Lucet runtime tests with the new
backend, so was missing some test failures due to missing pieces in the
new backend.

This PR adds (i) calls to probestack, when enabled, in the prologue of
every function with a stack frame larger than one page (configurable via
flags); and (ii) trap metadata for every instruction on x86-64 that can
access the stack, hence be the first point at which a stack overflow is
detected when the stack pointer is decremented.
2020-12-07 16:08:53 -08:00
Chris Fallin
1dddba649a x64 regalloc register order: put caller-saves (volatiles) first.
The x64 backend currently builds the `RealRegUniverse` in a way that
is generating somewhat suboptimal code. In many blocks, we see uses of
callee-save (non-volatile) registers (r12, r13, r14, rbx) first, even in
very short leaf functions where there are plenty of volatiles to use.
This is leading to unnecessary spills/reloads.

On one (local) test program, a medium-sized C benchmark compiled to Wasm
and run on Wasmtime, I am seeing a ~10% performance improvement with
this change; it will be less pronounced in programs with high register
pressure (there we are likely to use all registers regardless, so the
prologue/epilogue will save/restore all callee-saves), or in programs
with fewer calls, but this is a clear win for small functions and in
many cases removes prologue/epilogue clobber-saves altogether.

Separately, I think the RA's coalescing is tripping up a bit in some
cases; see e.g. the filetest touched by this commit that loads a value
into %rsi then moves to %rax and returns immediately. This is an
orthogonal issue, though, and should be addressed (if worthwhile) in
regalloc.rs.
2020-12-06 22:37:43 -08:00
Nick Fitzgerald
502b39606f Merge pull request #2364 from fitzgen/peepmatic-rebuild-test
peepmatic: Make the test-we-can-get-and-rebuild peephole optimizers test work on arm64
2020-12-04 10:32:39 -08:00
Julian Seward
8f34d2dc59 aarch64 isel: collect_address_addends: correctly handle ExtendOp::UXTW(negative immediate).
The current code doesn't correctly handle the case where `ExtendOp::UXTW` has
as source, a constant-producing insn that produces a negative (32-bit) value.
Then the value is incorrectly sign-extended to 64 bits (in fact, this has
already been done by `ctx.get_constant(insn)`), whereas it needs to be zero
extended.  The obvious fix, done here, is just to force bits 63:32 of the
extension to zero, hence zero-extending it.
2020-12-04 19:21:40 +01:00
Chris Fallin
bfd10512c1 Merge pull request #2473 from cfallin/fix-lowering
Fix lowering instruction-sinking (load-merging) bug.
2020-12-03 15:56:50 -08:00
Nick Fitzgerald
76d3fb61c3 Merge pull request #2293 from fitzgen/souper-no-assign-constant
souper-harvest: Do not generate assignments of constants
2020-12-03 15:20:41 -08:00
Chris Fallin
3e516e784b Fix lowering instruction-sinking (load-merging) bug.
This fixes a subtle corner case exposed during fuzzing. If we have a bit
of CLIF like:

```
    v0 = load.i64 ...
    v1 = iadd.i64 v0, ...
    v2 = do_other_thing v1
    v3 = load.i64 v1
```

and if this is lowered using a machine backend that can merge loads into
ALU ops, *and* that has an addressing mode that can look through add
ops, then the following can happen:

1. We lower the load at `v3`. This looks backward at the address
   operand tree and finds that `v1` is `v0` plus other things; it has an
   addressing mode that can add `v0`'s register and the other things
   directly; so it calls `put_value_in_reg(v0)` and uses its register in
   the amode. At this point, the add producing `v1` has no references,
   so it will not (yet) be codegen'd.
2. We lower `do_other_thing`, which puts `v1` in a register and uses it.
   the `iadd` now has a reference.
3. We reach the `iadd` and, because it has a reference, lower it. Our
   machine has the ability to merge a load into an ALU operation.
   Crucially, *we think the load at `v0` is mergeable* because it has
   only one user, the add at `v1` (!). So we merge it.
4. We reach the `load` at `v0` and because it has been merged into the
   `iadd`, we do not separately codegen it. The register that holds `v0`
   is thus never written, and the use of this register by the final load
   (Step 1) will see an undefined value.

The logic error here is that in the presence of pattern matching that
looks through pure ops, we can end up with multiple uses of a value that
originally had a single use (because we allow lookthrough of pure ops in
all cases). In other words, the multiple-use-ness of `v1` "passes
through" in some sense to `v0`. However, the load sinking logic is not
aware of this.

The fix, I think, is pretty simple: we disallow an effectful instruction
from sinking/merging if it already has some other use when we look back
at it.

If we disallowed lookthrough of *any* op that had multiple uses, even
pure ones, then we would avoid this scenario; but earlier experiments
showed that to have a non-negligible performance impact, so (given that
we've worked out the logic above) I think this complexity is worth it.
2020-12-03 14:59:12 -08:00
Nick Fitzgerald
1efdf10ca7 souper-harvest: ensure that select conditions are of type i1 2020-12-03 14:43:28 -08:00
Nick Fitzgerald
f7cf771ee6 souper-harvest: Do not generate assignments of constants
It turns out that Souper does not allow a constant to be assigned to a variable,
they may only be used as operands. The 2.0.0 version of the `souper-ir` crate
correctly reflects this. In the `cranelift_codegen::souper_harvest` module, we
need to modify our Souper IR harvester so that it delays converting `iconst` and
`bconst` into Souper IR until their values are used as operands. Finally, some
unit tests in the `peepmatic-souper` crate need some small updates as well.
2020-12-03 14:43:14 -08:00
Pat Hickey
0f1dc9a735 Merge pull request #2403 from bjorn3/simplejit_hot_swapping
SimpleJIT hot code swapping
2020-12-03 13:36:32 -08:00
Anton Kirilov
f59b274d22 Cranelift AArch64: Further vector constant improvements
Introduce support for MOVI/MVNI with 16-, 32-, and 64-bit elements,
and the vector variant of FMOV.

Copyright (c) 2020, Arm Limited.
2020-12-03 15:30:24 +00:00
Johnnie Birch
a548516f97 Enable SIMD spec tests for f32x4_rounding and f64x4_rounding.
Also address some review comments pointing out minor issues.
2020-12-02 13:44:51 -08:00
Johnnie Birch
a33e755cb2 Adds x86 SIMD support for Ceil, Floor, Trunc, and Nearest 2020-12-02 13:44:51 -08:00
Chris Fallin
dcbc4768c9 Merge pull request #2463 from cfallin/fix-heap-bounds-check-x64
x64 backend: fix condition-code used for part of explicit heap check.
2020-12-02 11:24:54 -08:00
Chris Fallin
60d7f7de0a Debug info: two fixes in x64 backend.
- Sort by generated-code offset to maintain invariant and avoid gimli
  panic.
- Fix srcloc interaction with branch peephole optimization in
  MachBuffer: if a srcloc range overlaps with a branch that is
  truncated, remove that srcloc range.

These issues were found while fuzzing the new backend (#2453); I suspect
that they arise with the new backend because we can sink instructions
(e.g. loads or extends) in more interesting ways than before, but I'm
not entirely sure.

Test coverage will be via the fuzz corpus once #2453 lands.
2020-12-02 10:41:14 -08:00
Chris Fallin
c9a81f008d x64 backend: fix condition-code used for part of explicit heap check.
A dynamic heap address computation may create up to two conditional
branches: the usual bounds-check, but also (in some cases) an
offset-addition overflow check.

The x64 backend had reversed the condition code for this check,
resulting in an always-trapping execution for a valid offset. I'm
somewhat surprised this has existed so long, but I suppose the
particular conditions (large offset, small offset guard, dynamic heap)
have been somewhat rare in our testing so far.

Found via fuzzing in #2453.
2020-12-02 10:40:53 -08:00
Chris Fallin
4bf2c15014 Merge pull request #2440 from jlb6740/remaining_simd_conversions
Adds support for i32x4.trunc_sat_f32x4_u
2020-11-30 22:53:59 -08:00