`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.
This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.
Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.
Part of #929
* Allow different Cranelift IR types to be used for different Wasm reference
types.
* Do not assume that all Wasm reference types are always a Cranelift IR
reference type. For example, `funcref`s might not need GC in some
implementations, and can therefore be represented with a pointer rather than a
reference type.
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
* rename PassiveElemIndex to ElemIndex and same for PassiveDataIndex (#1411)
* rename PassiveDataIndex to DataIndex
* rename PassiveElemIndex to ElemIndex
* Apply renamings to wasmtime as well
* Run rustfmt
Co-authored-by: csmoe <csmoe@msn.com>
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
* cranelift-wasm: replace `WasmTypesMap` with `ModuleTranslationState`
The `ModuleTranslationState` contains information decoded from the Wasm module
that must be referenced during each Wasm function's translation.
This is only for data that is maintained by `cranelift-wasm` itself, as opposed
to being maintained by the embedder. Data that is maintained by the embedder is
represented with `ModuleEnvironment`.
A `ModuleTranslationState` is returned by `translate_module`, and can then be
used when translating functions from that module.
* cranelift-wasm: rename `TranslationState` to `FuncTranslationState`
To disambiguate a bit with the new `ModuleTranslationState`.
* cranelift-wasm: Reorganize the internal `state` module into submodules
One module for the `ModuleTranslationState` and another for the
`FuncTranslationState`.
* cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`
`FuncTranslator` was two methods that always took ownership of `self`, so it
didn't really make sense as an object as opposed to two different functions, or
in this case methods on the object that actually persists for a longer time.
I think this improves ergonomics nicely.
Before:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
let mut translator = FuncTranslator::new();
translator.translate(body, ...)?;
}
```
After:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
module_translation.translate_func(body, ...)?;
}
```
Note that this commit does not remove `FuncTranslator`. It still exists, but is
just a wrapper over the `ModuleTranslationState` methods, and it is marked
deprecated, so that downstream users get a heads up. This should make the
transition easier.
* Revert "cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`"
This reverts commit 075f9ae933bcaae39348b61287c8f78a4009340d.
This commit introduces initial support for multi-value Wasm. Wasm blocks and
calls can now take and return an arbitrary number of values.
The encoding for multi-value blocks means that we need to keep the contents of
the "Types" section around when translating function bodies. To do this, we
introduce a `WasmTypesMap` type that maps the type indices to their parameters
and returns, construct it when parsing the "Types" section, and shepherd it
through a bunch of functions and methods when translating function bodies.
This patch restricts the `Err(..)` return from `blocktype_to_type` to be
`Err(..)` only in the case where it really is an error to continue. The three
use points of `blocktype_to_type` are changed to check for an `Err(..)` rather
than silently ignoring it. There are also cosmetic changes to `type_to_type`
and `tabletype_to_type`.
When compiling wasm_lua_binarytrees, this reduces the number of blocks
allocated by CL by 1.9%. Instruction count falls by 0.1%.
Details:
* `type_to_type` and `tabletype_to_type`:
- Added the function name in the failure message
- No functional change for non-error cases
- Push the `Ok(..)` to expression leaves, where it really applies. This
corrects the misleading impression that, in the case of an unsupported
type, the function returns `Ok` wrapped around whatever
`wasm_unsupported` returns. It doesn't do that, but it certainly reads
like that. This assumes that the LLVM backend will do tail merging, so
the generated code will be unchanged.
* `blocktype_to_type`:
- Change return type from `WasmResult<ir::Type>` to `WasmResult<Option<ir::Type>>`
- Manually inline the call to `type_to_type`, to make this function easier
to read.
- For the non-error case: map `TypeOrFuncType::Type(Type::EmptyBlockType)`
to `Ok(None)` rather than `Err(..)`, since that's what all the call sites
expect - For the error cases, add the function name in the failure
messages
* cranelift-wasm/src/code_translator.rs
- For the three uses of `blocktype_to_type`, use `?` to detect failures and
drop out immediately, meaning that the code will no longer silently ignore
errors.
* [wasm] return a WasmResult from `declare_table_elements`
This method in particular needs to accommodate failure because any table index other than zero is
currently invalid.
* [wasm] additional failure handling improvements
- Adds `WasmResult<()>` as the return type for most of the `ModuleEnvironment` methods that
previously returned nothing.
- Replaces some panics with `WasmError::Unsupported` now that the methods can return a result.
- Adds a `wasm_unsupported!()` macro for early returns with a formatted unsupported message.