* Update wasm-tools crates
This commit updates the wasm-tools family of crates as used in Wasmtime.
Notably this brings in the update which removes module linking support
as well as a number of internal refactorings around names and such
within wasmparser itself. This updates all of the wasm translation
support which binds to wasmparser as appropriate.
Other crates all had API-compatible changes for at least what Wasmtime
used so no further changes were necessary beyond updating version
requirements.
* Update a test expectation
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
The main purpose for doing this is that this is a large piece of
functionality used by Wasmtime which is entirely independent of
Cranelift. Eventually Wasmtime wants to be able to compile without
Cranelift, but it can't also depend on `cranelift-wasm` in that
situation for module translation which means that something needs to
happen. One option is to refactor what's in `cranelift-wasm` into a
separate crate (since all these pieces don't actually depend on
`cranelift-codegen`), but I personally chose to not do this because:
* The `ModuleEnvironment` trait, AFAIK, only has a primary user of
Wasmtime. The Spidermonkey integration, for example, does not use this.
* This is an extra layer of abstraction between Wasmtime and the
compilation phase which was a bit of a pain to maintain. It couldn't
be Wasmtime-specific as it was part of Cranelift but at the same time
it had lots of Wasmtime-centric functionality (such as module
linking).
* Updating the "dummy" implementation has become pretty onerous over
time as frequent additions are made and the "dummy" implementation was
never actually used anywhere. This ended up feeling like effectively
busy-work to update this.
For these reasons I've opted to to move the meat of `cranelift-wasm`
used by `wasmtime-environ` directly into `wasmtime-environ`. This means
that the only real meat that Wasmtime uses from `cranelift-wasm` is the
function-translation bits in the `wasmtime-cranelift` crate.
The changes in `wasmtime-environ` are largely to inline module parsing
together so it's a bit easier to follow instead of trying to connect
the dots between lots of various function calls.
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Fully support multiple returns in Wasmtime
For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.
The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.
This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.
These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!
Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.
Closes#1178
* Tweak some names and add docs
* "fix" lightbeam compile
* Fix TODO with dummy environ
* Unwind info is a property of the target, not the ABI
* Remove lightbeam unused imports
* Attempt to fix arm64
* Document new ABIs aren't stable
* Fix filetests to use the right target
* Don't always do 64-bit stores with cranelift
This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.
* At least get tests passing on the old backend
* Fix a typo
* Add some filetests with mixed abi calls
* Get `multi` example working
* Fix doctests on old x86 backend
* Add a mixture of wasmtime/system_v tests
* Implement imported/exported modules/instances
This commit implements the final piece of the module linking proposal
which is to flesh out the support for importing/exporting instances and
modules. This ended up having a few changes:
* Two more `PrimaryMap` instances are now stored in an `Instance`. The value
for instances is `InstanceHandle` (pretty easy) and for modules it's
`Box<dyn Any>` (less easy).
* The custom host state for `InstanceHandle` for `wasmtime` is now
`Arc<TypeTables` to be able to fully reconstruct an instance's types
just from its instance.
* Type matching for imports now has been updated to take
instances/modules into account.
One of the main downsides of this implementation is that type matching
of imports is duplicated between wasmparser and wasmtime, leading to
posssible bugs especially in the subtelties of module linking. I'm not
sure how best to unify these two pieces of validation, however, and it
may be more trouble than it's worth.
cc #2094
* Update wat/wast/wasmparser
* Review comments
* Fix a bug in publish script to vendor the right witx
Currently there's two witx binaries in our repository given the two wasi
spec submodules, so this updates the publication script to vendor the
right one.
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:
* Type contents are now stored separately from a `wasmtime_env::Module`.
Given that modules can freely alias types and have them used all over
the place, it seemed best to have one canonical location to type
storage which everywhere else points to (with indices). A new
`TypeTables` structure is produced during compilation which is shared
amongst all member modules in a wasm blob.
* Instantiation is heavily refactored to account for module linking. The
main gotcha here is that imports are now listed as "initializers". We
have a sort of pseudo-bytecode-interpreter which interprets the
initialization of a module. This is more complicated than just
matching imports at this point because in the module linking proposal
the module, alias, import, and instance sections may all be
interleaved. This means that imports aren't guaranteed to show up at
the beginning of the address space for modules/instances.
Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.
Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.
It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.
cc #2094
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
* Validate modules while translating
This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.
Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.
This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!
* Read function operators until EOF
This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.
This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.
Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.
Part of #929
* Allow different Cranelift IR types to be used for different Wasm reference
types.
* Do not assume that all Wasm reference types are always a Cranelift IR
reference type. For example, `funcref`s might not need GC in some
implementations, and can therefore be represented with a pointer rather than a
reference type.
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
* rename PassiveElemIndex to ElemIndex and same for PassiveDataIndex (#1411)
* rename PassiveDataIndex to DataIndex
* rename PassiveElemIndex to ElemIndex
* Apply renamings to wasmtime as well
* Run rustfmt
Co-authored-by: csmoe <csmoe@msn.com>
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
* cranelift-wasm: replace `WasmTypesMap` with `ModuleTranslationState`
The `ModuleTranslationState` contains information decoded from the Wasm module
that must be referenced during each Wasm function's translation.
This is only for data that is maintained by `cranelift-wasm` itself, as opposed
to being maintained by the embedder. Data that is maintained by the embedder is
represented with `ModuleEnvironment`.
A `ModuleTranslationState` is returned by `translate_module`, and can then be
used when translating functions from that module.
* cranelift-wasm: rename `TranslationState` to `FuncTranslationState`
To disambiguate a bit with the new `ModuleTranslationState`.
* cranelift-wasm: Reorganize the internal `state` module into submodules
One module for the `ModuleTranslationState` and another for the
`FuncTranslationState`.
* cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`
`FuncTranslator` was two methods that always took ownership of `self`, so it
didn't really make sense as an object as opposed to two different functions, or
in this case methods on the object that actually persists for a longer time.
I think this improves ergonomics nicely.
Before:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
let mut translator = FuncTranslator::new();
translator.translate(body, ...)?;
}
```
After:
```rust
let module_translation = translate_module(...)?;
for body in func_bodies {
module_translation.translate_func(body, ...)?;
}
```
Note that this commit does not remove `FuncTranslator`. It still exists, but is
just a wrapper over the `ModuleTranslationState` methods, and it is marked
deprecated, so that downstream users get a heads up. This should make the
transition easier.
* Revert "cranelift-wasm: replace `FuncTranslator` with methods on `ModuleTranslationState`"
This reverts commit 075f9ae933bcaae39348b61287c8f78a4009340d.
This commit introduces initial support for multi-value Wasm. Wasm blocks and
calls can now take and return an arbitrary number of values.
The encoding for multi-value blocks means that we need to keep the contents of
the "Types" section around when translating function bodies. To do this, we
introduce a `WasmTypesMap` type that maps the type indices to their parameters
and returns, construct it when parsing the "Types" section, and shepherd it
through a bunch of functions and methods when translating function bodies.
This patch restricts the `Err(..)` return from `blocktype_to_type` to be
`Err(..)` only in the case where it really is an error to continue. The three
use points of `blocktype_to_type` are changed to check for an `Err(..)` rather
than silently ignoring it. There are also cosmetic changes to `type_to_type`
and `tabletype_to_type`.
When compiling wasm_lua_binarytrees, this reduces the number of blocks
allocated by CL by 1.9%. Instruction count falls by 0.1%.
Details:
* `type_to_type` and `tabletype_to_type`:
- Added the function name in the failure message
- No functional change for non-error cases
- Push the `Ok(..)` to expression leaves, where it really applies. This
corrects the misleading impression that, in the case of an unsupported
type, the function returns `Ok` wrapped around whatever
`wasm_unsupported` returns. It doesn't do that, but it certainly reads
like that. This assumes that the LLVM backend will do tail merging, so
the generated code will be unchanged.
* `blocktype_to_type`:
- Change return type from `WasmResult<ir::Type>` to `WasmResult<Option<ir::Type>>`
- Manually inline the call to `type_to_type`, to make this function easier
to read.
- For the non-error case: map `TypeOrFuncType::Type(Type::EmptyBlockType)`
to `Ok(None)` rather than `Err(..)`, since that's what all the call sites
expect - For the error cases, add the function name in the failure
messages
* cranelift-wasm/src/code_translator.rs
- For the three uses of `blocktype_to_type`, use `?` to detect failures and
drop out immediately, meaning that the code will no longer silently ignore
errors.
* [wasm] return a WasmResult from `declare_table_elements`
This method in particular needs to accommodate failure because any table index other than zero is
currently invalid.
* [wasm] additional failure handling improvements
- Adds `WasmResult<()>` as the return type for most of the `ModuleEnvironment` methods that
previously returned nothing.
- Replaces some panics with `WasmError::Unsupported` now that the methods can return a result.
- Adds a `wasm_unsupported!()` macro for early returns with a formatted unsupported message.