Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.
- Replace "ebb_arg" with "ebb_param" in function names that deal with
EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.
No functional changes intended.
Add integer and floating comparison instructions that return CPU flags:
ifcmp, ifcmp_imm, and ffcmp.
Add conditional branch instructions that check CPU flags: brif, brff
Add instructions that check a condition in the CPU flags and return a
b1: trueif, trueff.
These are parallels to the existing regmove instruction, but the divert
the value to and from a stack slot.
Like regmove diversions, this is a temporary diversion that must be
local to the EBB.
These formats are not used any longer after the heap_load and heap_store
instructions were replaced by heap_addr.
Also drop the Uoffset32 immediate operand type which isn't used either.
Fixes#56.
We now have complete support for value location annotations in the
textual IL format. Values defined by instructions as well as EBB
arguments are covered.
With FuncEnvironment using FuncCursors in place of full
FunctionBuilders, it's useful to move several of these convenience
functions from FunctionBuilder to Function.
Add preamble syntax for declaring static and dynamic heaps, and update
the langref section on heaps. Add IR support for heap references.
Remove the heap_load and heap_store as discussed in #144. We will use
heap_addr along with native load and store instructions in their place.
Add the heap_addr instruction and document its bounds checking
semantics.
The new PrimaryMap replaces the primary EntityMap and the PrimaryEntityData
marker trait which was causing some confusion. We now have a clear
division between the two types of maps:
- PrimaryMap is used to assign entity numbers to the primary data for an
entity.
- EntityMap is a secondary mapping adding additional info.
The split also means that the secondary EntityMap can now behave as if
all keys have a default value. This means that we can get rid of the
annoying ensure() and get_or_default() methods ther were used everywhere
instead of indexing. Just use normal indexing now; non-existent keys
will return the default value.
See #144 for discussion.
- Add a new GlobalVar entity type both in Python and Rust.
- Define a UnaryGlobalVar instruction format containing a GlobalVar
reference.
- Add a globalvar.rs module defining the GlobalVarData with support for
'vmctx' and 'deref' global variable kinds.
Langref:
Add a section about global variables and the global_addr
instruction.
Parser:
Add support for the UnaryGlobalVar instruction format as well as
global variable declarations in the preamble.
A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
Add a StackSlotKind enumeration to help keep track of the different
kinds of stack slots supported:
- Incoming and outgoing function arguments on the stack.
- Spill slots and locals.
Change the text format syntax for declaring a stack slot to use a kind
keyword rather than just 'stack_slot'.
* Function names should start with %
* Create FunctionName from string
* Implement displaying of FunctionName as %nnnn with fallback to #xxxx
* Run rustfmt and fix FunctionName::with_string in parser
* Implement FunctionName::new as a generic function
* Binary function names should start with #
* Implement NameRepr for function name
* Fix examples in docs to reflect that function names start with %
* Rebase and fix filecheck tests
All values are now references into the value table, so drop the
distinction between direct and table values. Direct values don't exist
any more.
Also remove the parser support for the 'vxNN' syntax. Only 'vNN' values
can be parsed now.
Soon, InstructionData won't have sufficient information to compute this.
Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
Now we can access instruction results and arguments as well as EBB
arguments as slices.
Delete the Values iterator which was traversing the linked lists of
values. It is no longer needed.
This is the first step of the value list refactoring which will replace
linked lists of values with value lists.
- Keep a ValueList in the EbbData struct containing all the EBB
arguments.
- Change dfg.ebb_args() to return a slice instead of an iterator.
This leaves us in a temporary hybrid state where we maintain both a
linked list and a ValueList vector of the EBB arguments.
This affects the comparison instructions which now read "icmp ult a, b".
This mimics LLVM's style and makes it simpler to add instruction flags
in the future, such as "load v1" -> "load aligned v1".
These enumerated operands and flags feel like opcode modifiers rather
than value operands, so displaying them differently makes sense.
Value and numeric operands are still comma separated.
The tables returned by recipe_names() and recipe_constraints() are now
collected into an EncInfo struct that is available from
TargetIsa::encoding_info(). This is equivalent to the register bank
tables available fro TargetIsa::register_info().
This cleans of the TargetIsa interface and makes it easier to add
encoding-related information.
This instruction behaves like icmp fused with brnz, and it can be used
to represent fused compare+branch instruction on Intel when optimizing
for macro-op fusion.
RISC-V provides compare-and-branch instructions directly, and it is
needed there too.
Compare a scalar integer to an immediate constant. Both Intel and RISC-V
ISAs have this operation.
This requires the addition of a new IntCompareImm instruction format.
Allow some flexibility in the signature matching for instruction
formats. In particular, look for a value list format as a second chance
option.
The Return, ReturnReg, and TernaryOverflow formats all fit the single
MultiAry catch-all format for instructions without immediate operands.
No instruction sets actually have single instructions for materializing
vector constants. You always need to use a constant pool.
Cretonne doesn't have constant pools yet, but it will in the future, and
that is how vector constants should be represented.
Instruction formats are now identified by a signature that doesn't
include the ordering of value operands relative to immediate operands.
This means that the BinaryRev instruction format becomes redundant, so
delete it. The isub_imm instruction was the only one using that format.
Rename it to irsub_imm to make it clear what it does now that it is
printed as 'irsub_imm v2, 45'.
Now that variable arguments are always stored in a value list with the
fixed arguments, we no longer need the arcane [&[Value]; 2] return type.
Arguments are always stored contiguously, so just return a &[Value]
slice.
Also remove the each_arg() methods which were just trying to make it
easier to work with the old slice pair.
With the Return and ReturnReg formats converted to using value lists for
storing their arguments, thee are no remaining instruction formats with
variable argument lists in boxed storage.
The Return and ReturnReg formats are also going to be merged since
they are identical now.
The Branch format also stores its fixed argument in the value list. This
requires the value pool to be passed to a few more functions.
Note that this actually makes the Branch and Jump variants of
InstructionData identical. The instruction format hashing does not yet
understand that all value operands are stored in the value list. We'll
fix that in a later patch.
Also convert IndirectCall, noting that Call and IndirectCall remain
separate instruction formats because they have different immediate
fields.
Add a new kind of instruction format that keeps all of its value
arguments in a value list. These value lists are all allocated out of
the dfg.value_lists memory pool.
Instruction formats with the value_list property set store *all* of
their value arguments in a single value list. There is no distinction
between fixed arguments and variable arguments.
Change the Call instruction format to use the value list representation
for its arguments.
This change is only the beginning. The intent is to eliminate the
boxed_storage instruction formats completely. Value lists use less
memory, and when the transition is complete, InstructionData will have a
trivial Drop implementation.
If func.locations has not been properly resized to have an entry for all
values, we should just full in the default location for the missing
values instead of crashing.