I don't think this has happened in awhile but I've run a `cargo update`
as well as trimming some of the duplicate/older dependencies in
`Cargo.lock` by updating some of our immediate dependencies as well.
Rather than using paths from the root instruction to the instruction we are
matching against or checking if it is constant or whatever, use temporary
variables. When we successfully match an instruction's opcode, we simultaneously
define these temporaries for the instruction's operands. This is similar to how
open-coding these matches in Rust would use `match` expressions with pattern
matching to bind the operands to variables at the same time.
This saves about 1.8% of instructions retired when Peepmatic is enabled.
This lets us avoid the cost of `cranelift_codegen::ir::Opcode` to
`peepmatic_runtime::Operator` conversion overhead, and paves the way for
allowing Peepmatic to support non-clif optimizations (e.g. vcode optimizations).
Rather than defining our own `peepmatic::Operator` type like we used to, now the
whole `peepmatic` crate is effectively generic over a `TOperator` type
parameter. For the Cranelift integration, we use `cranelift_codegen::ir::Opcode`
as the concrete type for our `TOperator` type parameter. For testing, we also
define a `TestOperator` type, so that we can test Peepmatic code without
building all of Cranelift, and we can keep them somewhat isolated from each
other.
The methods that `peepmatic::Operator` had are now translated into trait bounds
on the `TOperator` type. These traits need to be shared between all of
`peepmatic`, `peepmatic-runtime`, and `cranelift-codegen`'s Peepmatic
integration. Therefore, these new traits live in a new crate:
`peepmatic-traits`. This crate acts as a header file of sorts for shared
trait/type/macro definitions.
Additionally, the `peepmatic-runtime` crate no longer depends on the
`peepmatic-macro` procedural macro crate, which should lead to faster build
times for Cranelift when it is using pre-built peephole optimizers.
This crate provides testing utilities for `peepmatic`, and a test-only
instruction set we can use to check that various optimizations do or don't
apply.