We had previously fixed a bug in which constant shift amounts should be
masked to modulo the number of bits in the operand; however, we did not
fix the analogous case for shifts incorporated into the second register
argument of ALU instructions that support integrated shifts. This
failure to mask resulted in illegal instructions being generated, e.g.
in https://bugzilla.mozilla.org/show_bug.cgi?id=1653502. This PR fixes
the issue by masking the amount, as the shift semantics require.
This commit adds support for generating stackmaps at safepoints to the
new backend framework and to the AArch64 backend in particular. It has
been tested to work with SpiderMonkey.
This commit adds the inital support to allow reftypes to flow through
the program when targetting aarch64. It also adds a fix to the
`ModuleTranslationState` needed to send R32/R64 types over from the
SpiderMonkey embedding.
This commit does not include any support for safepoints in aarch64
or the `MachInst` infrastructure; that is in the next commit.
This commit also makes a drive-by improvement to `Bint`, avoiding an
unneeded zero-extension op when the extended value comes directly from a
conditional-set (which produces a full-width 0 or 1).
* Switch CI back to nightly channel
I think all upstream issues are now fixed so we should be good to switch
back to nightly from our previously pinned version.
* Fix doc warnings
This commit removes the "set frame pointer" unwind code and frame
pointer information from Windows x64 unwind information.
In Windows x64 unwind information, a "frame pointer" is actually the
*base address* of the static part of the local frame and would be at some
negative offset to RSP upon establishing the frame pointer.
Currently Cranelift uses a "traditional" notion of a frame pointer, one
that is the highest address in the local frame (i.e. pointing at the
previous frame pointer on the stack).
Windows x64 unwind doesn't describe such frame pointers and only needs
one described if the frame contains a dynamic stack allocation.
Fixes#1967.
In discussions with @bnjbvr, it came up that generating `OneWayCondBr`s
with explicit, hardcoded PC-offsets as part of lowered instruction
sequences is actually unsafe, because the register allocator *might*
insert a spill or reload into the middle of our sequence. We were
careful about this in some cases but somehow missed that it was a
general restriction. Conceptually, all inter-instruction references
should be via labels at the VCode level; explicit offsets are only ever
known at emission time, and resolved by the `MachBuffer`.
To allow for conditional trap checks without modifying the CFG (as seen
by regalloc) during lowering, this PR instead adds a `TrapIf`
pseudo-instruction that conditionally skips a single embedded trap
instruction. It lowers to the same `condbr label ; trap ; label: ...`
sequence, but without the hardcoded branch-target offset in the lowering
code.
The failure to mask the amount triggered a panic due to a subtraction
overflow check; see
https://bugzilla.mozilla.org/show_bug.cgi?id=1649432. Attempting to
shift by an out-of-range amount should be defined to shift by an amount
mod the operand size (i.e., masked to 5 bits for 32-bit shifts, or 6
bits for 64-bit shifts).
This PR adds a conditional move following a heap bounds check through
which the address to be accessed flows. This conditional move ensures
that even if the branch is mispredicted (access is actually out of
bounds, but speculation goes down in-bounds path), the acually accessed
address is zero (a NULL pointer) rather than the out-of-bounds address.
The mitigation is controlled by a flag that is off by default, but can
be set by the embedding. Note that in order to turn it on by default,
we would need to add conditional-move support to the current x86
backend; this does not appear to be present. Once the deprecated
backend is removed in favor of the new backend, IMHO we should turn
this flag on by default.
Note that the mitigation is unneccessary when we use the "huge heap"
technique on 64-bit systems, in which we allocate a range of virtual
address space such that no 32-bit offset can reach other data. Hence,
this only affects small-heap configurations.
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.
Closes#1947
This converts an `i32x4` into an `f32x4` with some rounding either by using an AVX512VL/F instruction--VCVTUDQ2PS--or a long sequence of SSE4.1 compatible instructions.
When a load/store instruction needs an address of the form `v0 +
uextend(v1)` or `v0 + sextend(v1)` (or the commuted forms thereof), we
currently generate a separate zero/sign-extend operation and then use a
plain `[rA, rB]` addressing mode. This patch extends `lower_address()`
to look at both addends of an address if it has two addends and a zero
offset, recognize extension operations, and incorporate them directly
into a `[rA, rB, UXTW]` or `[rA, rB, SXTW]` form. This should improve
our performence on WebAssembly workloads, at least, because we often see
a 64-bit linear memory base indexed by a 32-bit (Wasm) pointer value.
- Properly mask constant values down to appropriate width when
generating a constant value directly in aarch64 backend. This was a
miscompilation introduced in the new-isel refactor. In combination
with failure to respect NarrowValueMode, this resulted in a very
subtle bug when an `i32` constant was used in bit-twiddling logic.
- Add support for `iadd_ifcout` in aarch64 backend as used in explicit
heap-check mode. With this change, we no longer fail heap-related
tests with the huge-heap-region mode disabled.
- Remove a panic that was occurring in some tests that are currently
ignored on aarch64, by simply returning empty/default information in
`value_label` functionality rather than touching unimplemented APIs.
This is not a bugfix per-se, but removes confusing panic messages from
`cargo test` output that might otherwise mislead.
These libcalls are useful for 32-bit platforms.
On x86_32 in particular, commit 4ec16fa0 added support for legalizing
64-bit shifts through SIMD operations. However, that legalization
requires SIMD to be enabled and SSE 4.1 to be supported, which is not
acceptable as a hard requirement.
The `convert_i64x2_imul` custom legalization checks the ISA flags for AVX512DQ or AVX512VL support and legalizes `imul.i64x2` to an `x86_pmullq` in this case; if not, it uses a lengthy SSE2-compatible instruction sequence.
Without this special instruction, legalizing to the AVX512 instruction AND the SSE instruction sequence is impossible. This extra instruction would be rendered unnecessary by the x64 backend.