This lets us avoid the cost of `cranelift_codegen::ir::Opcode` to
`peepmatic_runtime::Operator` conversion overhead, and paves the way for
allowing Peepmatic to support non-clif optimizations (e.g. vcode optimizations).
Rather than defining our own `peepmatic::Operator` type like we used to, now the
whole `peepmatic` crate is effectively generic over a `TOperator` type
parameter. For the Cranelift integration, we use `cranelift_codegen::ir::Opcode`
as the concrete type for our `TOperator` type parameter. For testing, we also
define a `TestOperator` type, so that we can test Peepmatic code without
building all of Cranelift, and we can keep them somewhat isolated from each
other.
The methods that `peepmatic::Operator` had are now translated into trait bounds
on the `TOperator` type. These traits need to be shared between all of
`peepmatic`, `peepmatic-runtime`, and `cranelift-codegen`'s Peepmatic
integration. Therefore, these new traits live in a new crate:
`peepmatic-traits`. This crate acts as a header file of sorts for shared
trait/type/macro definitions.
Additionally, the `peepmatic-runtime` crate no longer depends on the
`peepmatic-macro` procedural macro crate, which should lead to faster build
times for Cranelift when it is using pre-built peephole optimizers.
This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.
Peepmatic is a DSL for peephole optimizations and compiler for generating
peephole optimizers from them. The user writes a set of optimizations in the
DSL, and then `peepmatic` compiles the set of optimizations into an efficient
peephole optimizer:
```
DSL ----peepmatic----> Peephole Optimizer
```
The generated peephole optimizer has all of its optimizations' left-hand sides
collapsed into a compact automata that makes matching candidate instruction
sequences fast.
The DSL's optimizations may be written by hand or discovered mechanically with a
superoptimizer like [Souper][]. Eventually, `peepmatic` should have a verifier
that ensures that the DSL's optimizations are sound, similar to what [Alive][]
does for LLVM optimizations.
[Souper]: https://github.com/google/souper
[Alive]: https://github.com/AliveToolkit/alive2