* Update wasm-tools crates
Pulls in a new component binary format which should hopefully be the
last update for awhile.
* Update cargo vet configuration
This commit includes a set of changes that add initial support for `wasi-threads` to Wasmtime:
* feat: remove mutability from the WasiCtx Table
This patch adds interior mutability to the WasiCtx Table and the Table elements.
Major pain points:
* `File` only needs `RwLock<cap_std::fs::File>` to implement
`File::set_fdflags()` on Windows, because of [1]
* Because `File` needs a `RwLock` and `RwLock*Guard` cannot
be hold across an `.await`, The `async` from
`async fn num_ready_bytes(&self)` had to be removed
* Because `File` needs a `RwLock` and `RwLock*Guard` cannot
be dereferenced in `pollable`, the signature of
`fn pollable(&self) -> Option<rustix::fd::BorrowedFd>`
changed to `fn pollable(&self) -> Option<Arc<dyn AsFd + '_>>`
[1] da238e324e/src/fs/fd_flags.rs (L210-L217)
* wasi-threads: add an initial implementation
This change is a first step toward implementing `wasi-threads` in
Wasmtime. We may find that it has some missing pieces, but the core
functionality is there: when `wasi::thread_spawn` is called by a running
WebAssembly module, a function named `wasi_thread_start` is found in the
module's exports and called in a new instance. The shared memory of the
original instance is reused in the new instance.
This new WASI proposal is in its early stages and details are still
being hashed out in the [spec] and [wasi-libc] repositories. Due to its
experimental state, the `wasi-threads` functionality is hidden behind
both a compile-time and runtime flag: one must build with `--features
wasi-threads` but also run the Wasmtime CLI with `--wasm-features
threads` and `--wasi-modules experimental-wasi-threads`. One can
experiment with `wasi-threads` by running:
```console
$ cargo run --features wasi-threads -- \
--wasm-features threads --wasi-modules experimental-wasi-threads \
<a threads-enabled module>
```
Threads-enabled Wasm modules are not yet easy to build. Hopefully this
is resolved soon, but in the meantime see the use of
`THREAD_MODEL=posix` in the [wasi-libc] repository for some clues on
what is necessary. Wiggle complicates things by requiring the Wasm
memory to be exported with a certain name and `wasi-threads` also
expects that memory to be imported; this build-time obstacle can be
overcome with the `--import-memory --export-memory` flags only available
in the latest Clang tree. Due to all of this, the included tests are
written directly in WAT--run these with:
```console
$ cargo test --features wasi-threads -p wasmtime-cli -- cli_tests
```
[spec]: https://github.com/WebAssembly/wasi-threads
[wasi-libc]: https://github.com/WebAssembly/wasi-libc
This change does not protect the WASI implementations themselves from
concurrent access. This is already complete in previous commits or left
for future commits in certain cases (e.g., wasi-nn).
* wasi-threads: factor out process exit logic
As is being discussed [elsewhere], either calling `proc_exit` or
trapping in any thread should halt execution of all threads. The
Wasmtime CLI already has logic for adapting a WebAssembly error code to
a code expected in each OS. This change factors out this logic to a new
function, `maybe_exit_on_error`, for use within the `wasi-threads`
implementation.
This will work reasonably well for CLI users of Wasmtime +
`wasi-threads`, but embedders will want something better in the future:
when a `wasi-threads` threads fails, they may not want their application
to exit. Handling this is tricky, because it will require cancelling the
threads spawned by the `wasi-threads` implementation, something that is
not trivial to do in Rust. With this change, we defer that work until
later in order to provide a working implementation of `wasi-threads` for
experimentation.
[elsewhere]: https://github.com/WebAssembly/wasi-threads/pull/17
* review: work around `fd_fdstat_set_flags`
In order to make progress with wasi-threads, this change temporarily
works around limitations induced by `wasi-common`'s
`fd_fdstat_set_flags` to allow `&mut self` use in the implementation.
Eventual resolution is tracked in
https://github.com/bytecodealliance/wasmtime/issues/5643. This change
makes several related helper functions (e.g., `set_fdflags`) take `&mut
self` as well.
* test: use `wait`/`notify` to improve `threads.wat` test
Previously, the test simply executed in a loop for some hardcoded number
of iterations. This changes uses `wait` and `notify` and atomic
operations to keep track of when the spawned threads are done and join
on the main thread appropriately.
* various fixes and tweaks due to the PR review
---------
Signed-off-by: Harald Hoyer <harald@profian.com>
Co-authored-by: Harald Hoyer <harald@profian.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
* update cap-std family and its deps, and audit them
* audit base64: append a safe-to-deploy entry
I mistakenly marked it safe-to-run not understanding that safe-to-deploy was required.
* update to fd-lock 3.0.10
eliminates duplicate dep on windows-sys
* Cranelift: Harvest each Souper LHS into its own file
Souper only handles one input LHS at a time, so this makes it way easier to
script. Don't need to try and parse each LHS.
* Add audit of `arrayref` version 0.3.6
* Add audit of `constant_time_eq` version 0.2.4
Rework the compilation strategy for switch to:
* use brif instead of brz and brnz
* generate tables inline, rather than delyaing them to after the decision tree has been generated
* avoid allocating new vectors by using slices into the sorted contiguous ranges
* avoid generating some unconditional jumps
* output differences in test output using the similar crate for easier debugging
Most of these optimizations are in the egraph `cprop.isle` rules now,
making a separate crate unnecessary.
Also I think the `udiv` optimizations here are straight-up wrong (doing
signed instead of unsigned division, and panicking instead of preserving
traps on division by zero) so I'm guessing this crate isn't seriously
used anywhere.
At the least, bjorn3 confirms that cg_clif doesn't use this, and I've
verified that Wasmtime doesn't either.
Closes#1090.
Nothing major pulled in here, but wanted to update to the latest
versions which enable tail calls by default. When used in Wasmtime,
however, the feature is disabled without the possibility of being
enabled since it's not implemented.
* Fix compile error on FreeBSD x64
* Fix compile on FreeBSD arm64
* Update Cargo.lock for ittapi
* vet: certify diff for ittapi libraries
Co-authored-by: Andrew Brown <andrew.brown@intel.com>
This doesn't fully update tokio since the update to the latest version
has quite a few changes I'd prefer to not audit at the moment, but it
updates to a patched version.
* Adding in the foundations for Winch `filetests`
This commit adds two new crates into the Winch workspace:
`filetests` and `test-macros`. The intent is to mimic the
structure of Cranelift `filetests`, but in a simpler way.
* Updates to documentation
This commits adds a high level document to outline how to test Winch
through the `winch-tools` utility. It also updates some inline
documentation which gets propagated to the CLI.
* Updating test-macro to use a glob instead of only a flat directory
* Update WIT tooling used by Wasmtime
This commit updates the WIT tooling, namely the wasm-tools family of
crates, with recent updates. Notably:
* bytecodealliance/wasm-tools#867
* bytecodealliance/wasm-tools#871
This updates index spaces in components and additionally bumps the
minimum required version of the component binary format to be consumed
by Wasmtime (because of the index space changes). Additionally WIT
tooling now fully supports `use`.
Note that WIT tooling doesn't, at this time, fully support packages and
depending on remotely defined WIT packages. Currently WIT still needs to
be vendored in the project. It's hoped that future work with `cargo
component` and possible integration here could make the story about
depending on remotely-defined WIT more ergonomic and streamlined.
* Fix `bindgen!` codegen tests
* Add a test for `use` paths an implement support
* Update to crates.io versions of wasm-tools
* Uncomment codegen tests
* Wasmtime: Add `Config::disable_cache`
* bench-api: Always disable the cache
* bench-api: Always get a `Config` from CLI flags
This commit fixes an issue that I ran into just now where benchmarking
one `*.so` with `--engine-flags` was giving wildly unexpected results
comparing to something without `--engine-flags`. The root cause here
appears to that when specifying `--engine-flags` the CLI parsing code is
used to create a `Config` and when omitted a `Config::new` instance is
created. The main difference between these is that for the CLI caching
is enabled by default and for `Config::new` it is not. Coupled with the
fact that caching doesn't really work for the `main` branch this ended
up giving wild results.
The fix here is to first always use the CLI parsing code to create a
`Config` to ensure that a config is consistently created. Next the
`--disable-cache` flag is unconditionally passed to the CLI parsing to
ensure that compilation actually happens.
Once applied this enables comparing an engine without flags and an
engine with flags which provides consistent results.
* Fix compile error
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Fuzz additional targets in the cranelift-icache target. The list of targets fuzzed is controlled by the targets enabled in fuzz/Cargo.toml.
This PR also reworks how instruction disabling is done in function generator, moving the deny-list to a function to make the decision at runtime instead of compile time.
* cranelift-wasm: translate Wasm loads into lower-level CLIF operations
Rather than using `heap_{load,store,addr}`.
* cranelift: Remove the `heap_{addr,load,store}` instructions
These are now legalized in the `cranelift-wasm` frontend.
* cranelift: Remove the `ir::Heap` entity from CLIF
* Port basic memory operation tests to .wat filetests
* Remove test for verifying CLIF heaps
* Remove `heap_addr` from replace_branching_instructions_and_cfg_predecessors.clif test
* Remove `heap_addr` from readonly.clif test
* Remove `heap_addr` from `table_addr.clif` test
* Remove `heap_addr` from the simd-fvpromote_low.clif test
* Remove `heap_addr` from simd-fvdemote.clif test
* Remove `heap_addr` from the load-op-store.clif test
* Remove the CLIF heap runtest
* Remove `heap_addr` from the global_value.clif test
* Remove `heap_addr` from fpromote.clif runtests
* Remove `heap_addr` from fdemote.clif runtests
* Remove `heap_addr` from memory.clif parser test
* Remove `heap_addr` from reject_load_readonly.clif test
* Remove `heap_addr` from reject_load_notrap.clif test
* Remove `heap_addr` from load_readonly_notrap.clif test
* Remove `static-heap-without-guard-pages.clif` test
Will be subsumed when we port `make-heap-load-store-tests.sh` to generating
`.wat` tests.
* Remove `static-heap-with-guard-pages.clif` test
Will be subsumed when we port `make-heap-load-store-tests.sh` over to `.wat`
tests.
* Remove more heap tests
These will be subsumed by porting `make-heap-load-store-tests.sh` over to `.wat`
tests.
* Remove `heap_addr` from `simple-alias.clif` test
* Remove `heap_addr` from partial-redundancy.clif test
* Remove `heap_addr` from multiple-blocks.clif test
* Remove `heap_addr` from fence.clif test
* Remove `heap_addr` from extends.clif test
* Remove runtests that rely on heaps
Heaps are not a thing in CLIF or the interpreter anymore
* Add generated load/store `.wat` tests
* Enable memory-related wasm features in `.wat` tests
* Remove CLIF heap from fcmp-mem-bug.clif test
* Add a mode for compiling `.wat` all the way to assembly in filetests
* Also generate WAT to assembly tests in `make-load-store-tests.sh`
* cargo fmt
* Reinstate `f{de,pro}mote.clif` tests without the heap bits
* Remove undefined doc link
* Remove outdated SVG and dot file from docs
* Add docs about `None` returns for base address computation helpers
* Factor out `env.heap_access_spectre_mitigation()` to a local
* Expand docs for `FuncEnvironment::heaps` trait method
* Restore f{de,pro}mote+load clif runtests with stack memory
* wip
* start trying to write a runtime test
* cut out all the more complex test cases until i get this one working
* add macro parsing for the trappable error type config
* runtime result tests works for an empty and a string error type
* debugging: macro is broken because interfaces dont have names???
* thats how you name interfaces
* record error and variant error work
* show a concrete trap type, remove debug
* delete clap annotations from wit-bindgen crate
these are not used - clap isnt even an optional dep here - but were a holdover from the old home
This adds support for `.wat` tests in `cranelift-filetest`. The test runner
translates the WAT to Wasm and then uses `cranelift-wasm` to translate the Wasm
to CLIF.
These tests are always precise output tests. The test expectations can be
updated by running tests with the `CRANELIFT_TEST_BLESS=1` environment variable
set, similar to our compile precise output tests. The test's expected output is
contained in the last comment in the test file.
The tests allow for configuring the kinds of heaps used to implement Wasm linear
memory via TOML in a `;;!` comment at the start of the test.
To get ISA and Cranelift flags parsing available in the filetests crate, I had
to move the `parse_sets_and_triple` helper from the `cranelift-tools` binary
crate to the `cranelift-reader` crate, where I think it logically
fits.
Additionally, I had to make some more bits of `cranelift-wasm`'s dummy
environment `pub` so that I could properly wrap and compose it with the
environment used for the `.wat` tests. I don't think this is a big deal, but if
we eventually want to clean this stuff up, we can probably remove the dummy
environments completely, remove `translate_module`, and fold them into these new
test environments and test runner (since Wasmtime isn't using those things
anyways).
* - Added `--json` flag to settings command
- Refactored gathering of data into a `Settings` struct which can be used in both human/machine readable paths
- Split out human readable output to another function, it produces exactly the same result as before
* Outputting JSON by hand formatting it. This approach has the advantage of not needing any extra dependencies (i.e.serde), but is obviously a bit ugly.
* Rewritten JSON serialization to use serde
* Commenting and formatting
* Applied rustfmt
* Reduced version of serde and serde_json to fix cargo vet errors
* Updated cargo.lock to fix cargo vet errors
A mistake was made in the publication of `wit-parser` where a breaking
change was made without bumping its major version, causing build issues
on `main` if `wit-parser` is updated. This commit updates `wit-parser`
to the latest and we'll handle breaking changes better next time.
Closes#5390
* egraph support: rewrite to work in terms of CLIF data structures.
This work rewrites the "egraph"-based optimization framework in
Cranelift to operate on aegraphs (acyclic egraphs) represented in the
CLIF itself rather than as a separate data structure to which and from
which we translate the CLIF.
The basic idea is to add a new kind of value, a "union", that is like an
alias but refers to two other values rather than one. This allows us to
represent an eclass of enodes (values) as a tree. The union node allows
for a value to have *multiple representations*: either constituent value
could be used, and (in well-formed CLIF produced by correct
optimization rules) they must be equivalent.
Like the old egraph infrastructure, we take advantage of acyclicity and
eager rule application to do optimization in a single pass. Like before,
we integrate GVN (during the optimization pass) and LICM (during
elaboration).
Unlike the old egraph infrastructure, everything stays in the
DataFlowGraph. "Pure" enodes are represented as instructions that have
values attached, but that are not placed into the function layout. When
entering "egraph" form, we remove them from the layout while optimizing.
When leaving "egraph" form, during elaboration, we can place an
instruction back into the layout the first time we elaborate the enode;
if we elaborate it more than once, we clone the instruction.
The implementation performs two passes overall:
- One, a forward pass in RPO (to see defs before uses), that (i) removes
"pure" instructions from the layout and (ii) optimizes as it goes. As
before, we eagerly optimize, so we form the entire union of optimized
forms of a value before we see any uses of that value. This lets us
rewrite uses to use the most "up-to-date" form of the value and
canonicalize and optimize that form.
The eager rewriting and acyclic representation make each other work
(we could not eagerly rewrite if there were cycles; and acyclicity
does not miss optimization opportunities only because the first time
we introduce a value, we immediately produce its "best" form). This
design choice is also what allows us to avoid the "parent pointers"
and fixpoint loop of traditional egraphs.
This forward optimization pass keeps a scoped hashmap to "intern"
nodes (thus performing GVN), and also interleaves on a per-instruction
level with alias analysis. The interleaving with alias analysis allows
alias analysis to see the most optimized form of each address (so it
can see equivalences), and allows the next value to see any
equivalences (reuses of loads or stored values) that alias analysis
uncovers.
- Two, a forward pass in domtree preorder, that "elaborates" pure enodes
back into the layout, possibly in multiple places if needed. This
tracks the loop nest and hoists nodes as needed, performing LICM as it
goes. Note that by doing this in forward order, we avoid the
"fixpoint" that traditional LICM needs: we hoist a def before its
uses, so when we place a node, we place it in the right place the
first time rather than moving later.
This PR replaces the old (a)egraph implementation. It removes both the
cranelift-egraph crate and the logic in cranelift-codegen that uses it.
On `spidermonkey.wasm` running a simple recursive Fibonacci
microbenchmark, this work shows 5.5% compile-time reduction and 7.7%
runtime improvement (speedup).
Most of this implementation was done in (very productive) pair
programming sessions with Jamey Sharp, thus:
Co-authored-by: Jamey Sharp <jsharp@fastly.com>
* Review feedback.
* Review feedback.
* Review feedback.
* Bugfix: cprop rule: `(x + k1) - k2` becomes `x - (k2 - k1)`, not `x - (k1 - k2)`.
Co-authored-by: Jamey Sharp <jsharp@fastly.com>
* Import Wasmtime support from the `wit-bindgen` repo
This commit imports the `wit-bindgen-gen-host-wasmtime-rust` crate from
the `wit-bindgen` repository into the upstream Wasmtime repository. I've
chosen to not import the full history here since the crate is relatively
small and doesn't have a ton of complexity. While the history of the
crate is quite long the current iteration of the crate's history is
relatively short so there's not a ton of import there anyway. The
thinking is that this can now continue to evolve in-tree.
* Refactor `wasmtime-component-macro` a bit
Make room for a `wit_bindgen` macro to slot in.
* Add initial support for a `bindgen` macro
* Add tests for `wasmtime::component::bindgen!`
* Improve error forgetting `async` feature
* Add end-to-end tests for bindgen
* Add an audit of `unicase`
* Add a license to the test-helpers crate
* Add vet entry for `pulldown-cmark`
* Update publish script with new crate
* Try to fix publish script
* Update audits
* Update lock file
* Add release notes for 3.0.1
* Update some version directives for crates in Wasmtime
* Mark anything with `publish = false` as version 0.0.0
* Mark the icache coherence crate with the same version as Wasmtime
* Fix manifest directives
* Remove some custom error types in Wasmtime
These types are mostly cumbersome to work with nowadays that `anyhow` is
used everywhere else. This commit removes `InstantiationError` and
`SetupError` in favor of using `anyhow::Error` throughout. This can
eventually culminate in creation of specific errors for embedders to
downcast to but for now this should be general enough.
* Fix Windows build
The main change here is that io-lifetimes 1.0 switches to use the I/O safety
feature in the standard library rather than providing its own copy.
This also updates to windows-sys 0.42.0 and rustix 0.36.
There were several issues with ISLE's existing error reporting
implementation.
- When using Miette for more readable error reports, it would panic if
errors were reported from multiple files in the same run.
- Miette is pretty heavy-weight for what we're doing, with a lot of
dependencies.
- The `Error::Errors` enum variant led to normalization steps in many
places, to avoid using that variant to represent a single error.
This commit:
- replaces Miette with codespan-reporting
- gets rid of a bunch of cargo-vet exemptions
- replaces the `Error::Errors` variant with a new `Errors` type
- removes source info from `Error` variants so they're easy to construct
- adds source info only when formatting `Errors`
- formats `Errors` with a custom `Debug` impl
- shares common code between ISLE's callers, islec and cranelift-codegen
- includes a source snippet even with fancy-errors disabled
I tried to make this a series of smaller commits but I couldn't find any
good split points; everything was too entangled with everything else.
* feat: implement memory.atomic.notify,wait32,wait64
Added the parking_spot crate, which provides the needed registry for the
operations.
Signed-off-by: Harald Hoyer <harald@profian.com>
* fix: change trap message for HeapMisaligned
The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add test for atomic wait on non-shared memory
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests/spec_testsuite/proposals/threads
without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add atomics_notify.wast
checking that notify with 0 waiters returns 0 on shared and non-shared
memory.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests for atomic wait on shared memory
- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Pull `Module` out of `ModuleTextBuilder`
This commit is the first in what will likely be a number towards
preparing for serializing a compiled component to bytes, a precompiled
artifact. To that end my rough plan is to merge all of the compiled
artifacts for a component into one large object file instead of having
lots of separate object files and lots of separate mmaps to manage. To
that end I plan on eventually using `ModuleTextBuilder` to build one
large text section for all core wasm modules and trampolines, meaning
that `ModuleTextBuilder` is no longer specific to one module. I've
extracted out functionality such as function name calculation as well as
relocation resolving (now a closure passed in) in preparation for this.
For now this just keeps tests passing, and the trajectory for this
should become more clear over the following commits.
* Remove component-specific object emission
This commit removes the `ComponentCompiler::emit_obj` function in favor
of `Compiler::emit_obj`, now renamed `append_code`. This involved
significantly refactoring code emission to take a flat list of functions
into `append_code` and the caller is responsible for weaving together
various "families" of functions and un-weaving them afterwards.
* Consolidate ELF parsing in `CodeMemory`
This commit moves the ELF file parsing and section iteration from
`CompiledModule` into `CodeMemory` so one location keeps track of
section ranges and such. This is in preparation for sharing much of this
code with components which needs all the same sections to get tracked
but won't be using `CompiledModule`. A small side benefit from this is
that the section parsing done in `CodeMemory` and `CompiledModule` is no
longer duplicated.
* Remove separately tracked traps in components
Previously components would generate an "always trapping" function
and the metadata around which pc was allowed to trap was handled
manually for components. With recent refactorings the Wasmtime-standard
trap section in object files is now being generated for components as
well which means that can be reused instead of custom-tracking this
metadata. This commit removes the manual tracking for the `always_trap`
functions and plumbs the necessary bits around to make components look
more like modules.
* Remove a now-unnecessary `Arc` in `Module`
Not expected to have any measurable impact on performance, but
complexity-wise this should make it a bit easier to understand the
internals since there's no longer any need to store this somewhere else
than its owner's location.
* Merge compilation artifacts of components
This commit is a large refactoring of the component compilation process
to produce a single artifact instead of multiple binary artifacts. The
core wasm compilation process is refactored as well to share as much
code as necessary with the component compilation process.
This method of representing a compiled component necessitated a few
medium-sized changes internally within Wasmtime:
* A new data structure was created, `CodeObject`, which represents
metadata about a single compiled artifact. This is then stored as an
`Arc` within a component and a module. For `Module` this is always
uniquely owned and represents a shuffling around of data from one
owner to another. For a `Component`, however, this is shared amongst
all loaded modules and the top-level component.
* The "module registry" which is used for symbolicating backtraces and
for trap information has been updated to account for a single region
of loaded code holding possibly multiple modules. This involved adding
a second-level `BTreeMap` for now. This will likely slow down
instantiation slightly but if it poses an issue in the future this
should be able to be represented with a more clever data structure.
This commit additionally solves a number of longstanding issues with
components such as compiling only one host-to-wasm trampoline per
signature instead of possibly once-per-module. Additionally the
`SignatureCollection` registration now happens once-per-component
instead of once-per-module-within-a-component.
* Fix compile errors from prior commits
* Support AOT-compiling components
This commit adds support for AOT-compiled components in the same manner
as `Module`, specifically adding:
* `Engine::precompile_component`
* `Component::serialize`
* `Component::deserialize`
* `Component::deserialize_file`
Internally the support for components looks quite similar to `Module`.
All the prior commits to this made adding the support here
(unsurprisingly) easy. Components are represented as a single object
file as are modules, and the functions for each module are all piled
into the same object file next to each other (as are areas such as data
sections). Support was also added here to quickly differentiate compiled
components vs compiled modules via the `e_flags` field in the ELF
header.
* Prevent serializing exported modules on components
The current representation of a module within a component means that the
implementation of `Module::serialize` will not work if the module is
exported from a component. The reason for this is that `serialize`
doesn't actually do anything and simply returns the underlying mmap as a
list of bytes. The mmap, however, has `.wasmtime.info` describing
component metadata as opposed to this module's metadata. While rewriting
this section could be implemented it's not so easy to do so and is
otherwise seen as not super important of a feature right now anyway.
* Fix windows build
* Fix an unused function warning
* Update crates/environ/src/compilation.rs
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Initial skeleton for Winch
This commit introduces the initial skeleton for Winch, the "baseline"
compiler.
This skeleton contains mostly setup code for the ISA, ABI, registers,
and compilation environment abstractions. It also includes the
calculation of function local slots.
As of this commit, the structure of these abstractions looks like the
following:
+------------------------+
| v
+----------+ +-----+ +-----------+-----+-----------------+
| Compiler | --> | ISA | --> | Registers | ABI | Compilation Env |
+----------+ +-----+ +-----------+-----+-----------------+
| ^
+------------------------------+
* Compilation environment will hold a reference to the function data
* Add basic documentation to the ABI trait
* Enable x86 and arm64 in cranelift-codegen
* Add reg_name function for x64
* Introduce the concept of a MacroAssembler and Assembler
This commit introduces the concept of a MacroAsesembler and
Assembler. The MacroAssembler trait will provide a high enough
interface across architectures so that each ISA implementation can use their own low-level
Assembler implementation to fulfill the interface. Each Assembler will
provide a 1-1 mapping to each ISA instruction.
As of this commit, only a partial debug implementation is provided for
the x64 Assembler.
* Add a newtype over PReg
Adds a newtype `Reg` over regalloc2::PReg; this ensures that Winch
will operate only on the concept of `Reg`. This change is temporary
until we have the necessary machinery to share a common Reg
abstraction via `cranelift_asm`
* Improvements to local calcuation
- Add `LocalSlot::addressed_from_sp`
- Use `u32` for local slot and local sizes calculation
* Add helper methods to ABIArg
Adds helper methods to retrieve register and type information from the argument
* Make locals_size public in frame
* Improve x64 register naming depending on size
* Add new methods to the masm interface
This commit introduces the ability for the MacroAssembler to reserve
stack space, get the address of a given local and perform a stack
store based on the concept of `Operand`s.
There are several motivating factors to introduce the concept of an
Operand:
- Make the translation between Winch and Cranelift easier;
- Make dispatching from the MacroAssembler to the underlying Assembler
- easier by minimizing the amount of functions that we need to define
- in order to satisfy the store/load combinations
This commit also introduces the concept of a memory address, which
essentially describes the addressing modes; as of this commit only one
addressing mode is supported. We'll also need to verify that this
structure will play nicely with arm64.
* Blank masm implementation for arm64
* Implementation of reserve_stack, local_address, store and fp_offset
for x64
* Implement function prologue and argument register spilling
* Add structopt and wat
* Fix debug instruction formatting
* Make TargetISA trait publicly accessible
* Modify the MacroAssembler finalize siganture to return a slice of strings
* Introduce a simple CLI for Winch
To be able to compile Wasm programs with Winch independently. Mostly
meant for testing / debugging
* Fix bug in x64 assembler mov_rm
* Remove unused import
* Move the stack slot calculation to the Frame
This commit moves the calculation of the stack slots to the frame
handler abstraction and also includes the calculation of the limits
for the function defined locals, which will be used to zero the locals
that are not associated to function arguments
* Add i32 and i64 constructors to local slots
* Introduce the concept of DefinedLocalsRange
This commit introduces `DefinedLocalsRange` to track the stack offset
at which the function-defined locals start and end; this is later used
to zero-out that stack region
* Add constructors for int and float registers
* Add a placeholder stack implementation
* Add a regset abstraction to track register availability
Adds a bit set abstraction to track register availability for register
allocation.
The bit set has no specific knowledge about physical registers, it
works on the register's hardware encoding as the source of truth.
Each RegSet is expected to be created with the universe of allocatable
registers per ISA when starting the compilation of a particular function.
* Add an abstraction over register and immediate
This is meant to be used as the source for stores.
* Add a way to zero local slots and an initial skeletion of regalloc
This commit introduces `zero_local_slots` to the MacroAssembler; which
ensures that function defined locals are zeroed out when starting the
function body.
The algorithm divides the defined function locals stack range
into 8 byte slots and stores a zero at each address. This process
relies on register allocation if the amount of slots that need to be
initialized is greater than 1. In such case, the next available
register is requested to the register set and it's used to store a 0,
which is then stored at every local slot
* Update to wasmparser 0.92
* Correctly track if the regset has registers available
* Add a result entry to the ABI signature
This commuit introduces ABIResult as part of the ABISignature;
this struct will track how function results are stored; initially it
will consiste of a single register that will be requested to the
register allocator at the end of the function; potentially causing a spill
* Move zero local slots and add more granular methods to the masm
This commit removes zeroing local slots from the MacroAssembler and
instead adds more granular methods to it (e.g `zero`, `add`).
This allows for better code sharing since most of the work done by the
algorithm for zeroing slots will be the same in all targets, except
for the binary emissions pieces, which is what gets delegated to the masm
* Use wasmparser's visitor API and add initial support for const and add
This commit adds initial support for the I32Const and I32
instructions; this involves adding a minimum for register
allocation. Note that some regalloc pieces are still incomplete, since
for the current set of supported instructions they are not needed.
* Make the ty field public in Local
* Add scratch_reg to the abi
* Add a method to get a particular local from the Frame
* Split the compilation environment abstraction
This commit splits the compilation environment into two more concise
abstractions:
1. CodeGen: the main abstraction for code generation
2. CodeGenContext: abstraction that shares the common pieces for
compilation; these pieces are shared between the code generator and
the register allocator
* Add `push` and `load` to the MacroAssembler
* Remove dead code warnings for unused paths
* Map ISA features to cranelift-codegen ISA features
* Apply formatting
* Fix Cargo.toml after a bad rebase
* Add component-compiler feature
* Use clap instead of structopt
* Add winch to publish.rs script
* Minor formatting
* Add tests to RegSet and fix two bugs when freeing and checking for
register availability
* Add tests to Stack
* Free source register after a non-constant i32 add
* Improve comments
- Remove unneeded comments
- And improve some of the TODO items
* Update default features
* Drop the ABI generic param and pass the word_size information directly
To avoid dealing with dead code warnings this commit passes the word
size information directly, since it's the only piece of information
needed from the ABI by Codegen until now
* Remove dead code
This piece of code will be put back once we start integrating Winch
with Wasmtime
* Remove unused enum variant
This variant doesn't get constructed; it should be added back once a
backend is added and not enabled by default or when Winch gets
integrated into Wasmtime
* Fix unused code in regset tests
* Update spec testsuite
* Switch the visitor pattern for a simpler operator match
This commit removes the usage of wasmparser's visitor pattern and
instead defaults to a simpler operator matching approach. This removes
the complexity of having to define all the visitor trait functions at once.
* Use wasmparser's Visitor trait with a different macro strategy
This commit puts back wasmparser's Visitor trait, with a sigle;
simpler macro, only used for unsupported operators.
* Restructure Winch
This commit restuructures Winch's parts. It divides the initial
approach into three main crates: `winch-codegen`,`wasmtime-winch` and `winch-tools`.
`wasmtime-winch` is reponsible for the Wasmtime-Winch integration.
`winch-codegen` is solely responsible for code generation.
`winch-tools` is CLI tool to compile Wasm programs, mainly for testing purposes.
* Refactor zero local slots
This commit moves the logic of zeroing local slots from the codegen
module into a method with a default implementation in the
MacroAssembler trait: `zero_mem_range`.
The refactored implementation is very similar to the previous
implementation with the only difference
that it doesn't allocates a general-purpose register; it instead uses
the register allocator to retrieve the scratch register and uses this
register to unroll the series of zero stores.
* Tie the codegen creation to the ISA ABI
This commit makes the relationship between the ISA ABI and the codegen
explicit. This allows us to pass down ABI-specific bit and pieces to
the codegeneration. In this case the only concrete piece that we need
is the ABI word size.
* Mark winch as publishable directory
* Revamp winch docs
This commit ensures that all the code comments in Winch are compliant
with the syle used in the rest of Wasmtime's codebase.
It also imptoves, generally the quality of the comments in some modules.
* Panic when using multi-value when the target is aarch64
Similar to x64, this commit ensures that the abi signature of the
current function doesn't use multi-value returns
* Document the usage of directives
* Use endianness instead of endianess in the ISA trait
* Introduce a three-argument form in the MacroAssembler
This commit introduces the usage of three-argument form for the
MacroAssembler interface. This allows for a natural mapping for
architectures like aarch64. In the case of x64, the implementation can
simply restrict the implementation asserting for equality in two of
the arguments of defaulting to a differnt set of instructions.
As of this commit, the implementation of `add` panics if the
destination and the first source arguments are not equal; internally
the x64 assembler implementation will ensure that all the allowed
combinations of `add` are satisfied. The reason for panicking and not
emitting a `mov` followed by an `add` for example is simply because register
allocation happens right before calling `add`, which ensures any
register-to-register moves, if needed.
This implementation will evolve in the future and this panic will be
lifted if needed.
* Improve the documentation for the MacroAssembler.
Documents the usage of three-arg form and the intention around the
high-level interface.
* Format comments in remaining modules
* Clean up Cargo.toml for winch pieces
This commit adds missing fields to each of Winch's Cargo.toml.
* Use `ModuleTranslation::get_types()` to derive the function type
* Assert that start range is always word-size aligned
* Make send and remove wrapper around WasiNnCtx·
This removes the wrapper around WasiNnCtx and no longer requires borrow_mut(). Once send/sync
changes in OpenVINO crate are merged in it will allow·use by frameworks that requires this trait.
* Bump openvino to compatible version.
* BackendExecutionContext should be Send and Sync
* Fix rust format issues.
* Update Cargo.lock for openvino
* Audit changes to openvino crates.
* wiggle: no longer need to guard wasmtime integration behind a feature
this existed so we could use wiggle in lucet, but lucet is long EOL
* replace wiggle::Trap with wiggle::wasmtime_crate::Trap
* wiggle tests: unwrap traps because we cant assert_eq on them
* wasi-common: emit a wasmtime::Trap instead of a wiggle::Trap
formally add a dependency on wasmtime here to make it obvious, though
we do now have a transitive one via wiggle no matter what (and therefore
can get rid of the default-features=false on the wiggle dep)
* wasi-nn: use wasmtime::Trap instead of wiggle::Trap
there's no way the implementation of this func is actually
a good idea, it will panic the host process on any error,
but I'll ask @mtr to fix that
* wiggle test-helpers examples: fixes
* wasi-common cant cross compile to wasm32-unknown-emscripten anymore
this was originally for the WASI polyfill for web targets. Those days
are way behind us now.
* wasmtime wont compile for armv7-unknown-linux-gnueabihf either