As discussed previously, we need a way to be able to configure Wasmtime when running it in the Sightglass benchmark infrastructure. The easiest way to do this seemed to be to pass a string from Sightglass to the `bench-api` library and parse this in the same way that Wasmtime parses its CLI flags. The structure that contains these flags is `CommonOptions`, so it has been moved to its own crate to be depended on by both `wasmtime-cli` and `wasmtime-bench-api`. Also, this change adds an externally-visible function for parsing a string into `CommonOptions`, which is used for configuring an engine.
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
Other than doc updates, this just contains bytecodealliance/cap-std#235,
a fix for compilation errors on Rust nightly that look like this:
```
error[E0308]: mismatched types
--> cap-primitives/src/fs/via_parent/rename.rs:22:58
|
22 | let (old_dir, old_basename) = open_parent(old_start, &old_path)?;
| ^^^^^^^^^ expected struct `Path`, found opaque type
|
::: cap-primitives/src/rustix/fs/dir_utils.rs:67:48
|
67 | pub(crate) fn strip_dir_suffix(path: &Path) -> impl Deref<Target = Path> + '_ {
| ------------------------------ the found opaque type
|
= note: expected struct `Path`
found opaque type `impl Deref<Target = Path>`
```
Following up on #3696, use the new is-terminal crate to test for a tty
rather than having platform-specific logic in Wasmtime. The is-terminal
crate has a platform-independent API which takes a handle.
This also updates the tree to cap-std 0.24 etc., to avoid depending on
multiple versions of io-lifetimes at once, as enforced by the cargo deny
check.
* Update to cap-std 0.22.0.
The main change relevant to Wasmtime here is that this includes the
rustix fix for compilation errors on Rust nightly with the `asm!` macro.
* Add itoa to deny.toml.
* Update the doc and fuzz builds to the latest Rust nightly.
* Update to libc 0.2.112 to pick up the `POLLRDHUP` fix.
* Update to cargo-fuzz 0.11, for compatibility with Rust nightly.
This appears to be the fix for rust-fuzz/cargo-fuzz#277.
This pulls in a fix for Android, where Android's seccomp policy on older
versions is to make `openat2` irrecoverably crash the process, so we have
to do a version check up front rather than relying on `ENOSYS` to
determine if `openat2` is supported.
And it pulls in the fix for the link errors when multiple versions of
rsix/rustix are linked in.
And it has updates for two crate renamings: rsix has been renamed to
rustix, and unsafe-io has been renamed to io-extras.
* Use rsix to make system calls in Wasmtime.
`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:
- It eliminates some `unsafe` blocks in Wasmtime's code. There's
still an `unsafe` block in the library, but this way, the `unsafe`
is factored out and clearly scoped.
- And, it makes error handling more consistent, factoring out code for
checking return values and `io::Error::last_os_error()`, and code that
does `errno::set_errno(0)`.
This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
- Fixes for compiling on OpenBSD
- io-lifetimes 0.3.0 has an option (io_lifetimes_use_std, which is off
by default) for testing the `io_safety` feature in Rust nightly.
* Port wasi-common to io-lifetimes.
This ports wasi-common from unsafe-io to io-lifetimes.
Ambient authority is now indicated via calls to `ambient_authority()`
from the ambient-authority crate, rather than using `unsafe` blocks.
The `GetSetFdFlags::set_fd_flags` function is now split into two phases,
to simplify lifetimes in implementations which need to close and re-open
the underlying file.
* Use posish for errno values instead of libc.
This eliminates one of the few remaining direct libc dependencies.
* Port to posish::io::poll.
Use posish::io::poll instead of calling libc directly. This factors out
more code from Wasmtime, and eliminates the need to manipulate raw file
descriptors directly.
And, this eliminates the last remaining direct dependency on libc in
wasi-common.
* Port wasi-c-api to io-lifetimes.
* Update to posish 0.16.0.
* Embeded NULs in filenames now get `EINVAL` instead of `EILSEQ`.
* Accept either `EILSEQ` or `EINVAL` for embedded NULs.
* Bump the nightly toolchain to 2021-07-12.
This fixes build errors on the semver crate, which as of this writing
builds with latest nightly and stable but not 2021-04-11, the old pinned
version.
* Have cap-std-sync re-export ambient_authority so that users get the same version.
This adds the ability to add feature flags (e.g. `--features wasi-nn`) when compiling `wasmtime-bench-api` to allow benchmarking Wasmtime with WASI proposals included. Note that due to https://github.com/rust-lang/cargo/issues/5364, these features are only available:
- in the `crates/bench-api` directory, e.g. `pushd crates/bench-api; cargo build --features wasi-crypto`
- or from the top-level project directory using `-Zpackage-features`, e.g. `OPENVINO_INSTALL_DIR=/opt/intel/openvino cargo +nightly build -p wasmtime-bench-api -Zpackage-features --features wasi-nn`
This helps us avoid measurement bias due to accidental locality of unrelated
heap objects. See *Stabilizer: Statistically Sound Performance Evaluation* by
Curtsinger and Berger for details (although Stabilizer deals with much more than
just the location of heap allocations):
https://people.cs.umass.edu/~emery/pubs/stabilizer-asplos13.pdf
The new crate introduced here, `wasmtime-bench-api`, creates a shared library, e.g. `wasmtime_bench_api.so`, for executing Wasm benchmarks using Wasmtime. It allows us to measure several phases separately by exposing `engine_compile_module`, `engine_instantiate_module`, and `engine_execute_module`, which pass around an opaque pointer to the internally initialized state. This state is initialized and freed by `engine_create` and `engine_free`, respectively. The API also introduces a way of passing in functions to satisfy the `"bench" "start"` and `"bench" "end"` symbols that we expect Wasm benchmarks to import. The API is exposed in a C-compatible way so that we can dynamically load it (carefully) in our benchmark runner.