On the build side, this commit introduces two things:
1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.
2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.
Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.
Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.
In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:
dst = src1 op src2
Rather than only the typical x86-64 2-operand form:
dst = dst op src
This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.
("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)
There are two motivations for this change:
1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
lowering to translate a CLIF expression that evaluates to some value into a
`MachInst` expression that evaluates to the same value. We want both the
lowering itself and the resulting `MachInst` to be pure and referentially
transparent. This is both a nice paradigm for compiler writers that are
authoring and maintaining lowering rules and is a prerequisite to any sort of
formal verification of our lowering rules in the future.
2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
be in SSA form.
* Add some debug logging for timing in module compiles
This is sometimes helpful when debugging slow compiles from fuzz bugs or
similar.
* Fix total duration calculation to not double-count
Some platforms such as AArch64 Linux support different memory page
sizes, so we need to be conservative when choosing the code section
alignment (which is equal to the page size) by using the maximum.
Copyright (c) 2021, Arm Limited.
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.
Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
* Support full set of ADD LOGICAL / SUBTRACT LOGICAL instructions
* Full implementation of IaddIfcout lowering
* Enable most memory64 tests (except simd and threads)
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.
A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.
[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
- Add relocation handling needed after PR #3275
- Fix incorrect handling of signed constants detected by PR #3056 test
- Fix LabelUse max pos/neg ranges; fix overflow in buffers.rs
- Disable fuzzing tests that require pre-built v8 binaries
- Disable cranelift test that depends on i128
- Temporarily disable memory64 tests
Implemented the following Opcodes for the Cranelift interpreter:
- `Unarrow` to combine two SIMD vectors into a new vector with twice
the lanes but half the width, with signed inputs which are clamped to
`0x00`.
- `Uunarrow` to perform the same operation as `Unarrow` but treating
inputs as unsigned.
- `Snarrow` to perform the same operation as `Unarrow` but treating
both inputs and outputs as signed, and saturating accordingly.
Note that all 3 instructions saturate at the type boundaries.
Copyright (c) 2021, Arm Limited