* Use rsix to make system calls in Wasmtime.
`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:
- It eliminates some `unsafe` blocks in Wasmtime's code. There's
still an `unsafe` block in the library, but this way, the `unsafe`
is factored out and clearly scoped.
- And, it makes error handling more consistent, factoring out code for
checking return values and `io::Error::last_os_error()`, and code that
does `errno::set_errno(0)`.
This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
* Restore POSIX signal handling on MacOS behind a feature flag
As described in Issue #3052, the switch to Mach Exception handling
removed `unix::StoreExt` from the public API of crate on MacOS.
That is a breaking change and makes it difficult for some
application to upgrade to the current stable Wasmtime.
As a workaround this PR introduces a feature flag called
`posix-signals-on-macos` that restores the old behaviour on MacOS.
The flag is disabled by default.
* Fix test guard
* Fix formatting in the test
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* Switch macOS to using mach ports for trap handling
This commit moves macOS to using mach ports instead of signals for
handling traps. The motivation for this is listed in #2456, namely that
once mach ports are used in a process that means traditional UNIX signal
handlers won't get used. This means that if Wasmtime is integrated with
Breakpad, for example, then Wasmtime's trap handler never fires and
traps don't work.
The `traphandlers` module is refactored as part of this commit to split
the platform-specific bits into their own files (it was growing quite a
lot for one inline `cfg_if!`). The `unix.rs` and `windows.rs` files
remain the same as they were before with a few minor tweaks for some
refactored interfaces. The `macos.rs` file is brand new and lifts almost
its entire implementation from SpiderMonkey, adapted for Wasmtime
though.
The main gotcha with mach ports is that a separate thread is what
services the exception. Some unsafe magic allows this separate thread to
read non-`Send` and temporary state from other threads, but is hoped to
be safe in this context. The unfortunate downside is that calling wasm
on macOS now involves taking a global lock and modifying a global hash
map twice-per-call. I'm not entirely sure how to get out of this cost
for now, but hopefully for any embeddings on macOS it's not the end of
the world.
Closes#2456
* Add a sketch of arm64 apple support
* store: maintain CallThreadState mapping when switching fibers
* cranelift/aarch64: generate unwind directives to disable pointer auth
Aarch64 post ARMv8.3 has a feature called pointer authentication,
designed to fight ROP/JOP attacks: some pointers may be signed using new
instructions, adding payloads to the high (previously unused) bits of
the pointers. More on this here: https://lwn.net/Articles/718888/
Unwinders on aarch64 need to know if some pointers contained on the call
frame contain an authentication code or not, to be able to properly
authenticate them or use them directly. Since native code may have
enabled it by default (as is the case on the Mac M1), and the default is
that this configuration value is inherited, we need to explicitly
disable it, for the only kind of supported pointers (return addresses).
To do so, we set the value of a non-existing dwarf pseudo register (34)
to 0, as documented in
https://github.com/ARM-software/abi-aa/blob/master/aadwarf64/aadwarf64.rst#note-8.
This is done at the function granularity, in the spirit of Cranelift
compilation model. Alternatively, a single directive could be generated
in the CIE, generating less information per module.
* Make exception handling work on Mac aarch64 too
* fibers: use a breakpoint instruction after the final call in wasmtime_fiber_start
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
* Redo the statically typed `Func` API
This commit reimplements the `Func` API with respect to statically typed
dispatch. Previously `Func` had a `getN` and `getN_async` family of
methods which were implemented for 0 to 16 parameters. The return value
of these functions was an `impl Fn(..)` closure with the appropriate
parameters and return values.
There are a number of downsides with this approach that have become
apparent over time:
* The addition of `*_async` doubled the API surface area (which is quite
large here due to one-method-per-number-of-parameters).
* The [documentation of `Func`][old-docs] are quite verbose and feel
"polluted" with all these getters, making it harder to understand the
other methods that can be used to interact with a `Func`.
* These methods unconditionally pay the cost of returning an owned `impl
Fn` with a `'static` lifetime. While cheap, this is still paying the
cost for cloning the `Store` effectively and moving data into the
closed-over environment.
* Storage of the return value into a struct, for example, always
requires `Box`-ing the returned closure since it otherwise cannot be
named.
* Recently I had the desire to implement an "unchecked" path for
invoking wasm where you unsafely assert the type signature of a wasm
function. Doing this with today's scheme would require doubling
(again) the API surface area for both async and synchronous calls,
further polluting the documentation.
The main benefit of the previous scheme is that by returning a `impl Fn`
it was quite easy and ergonomic to actually invoke the function. In
practice, though, examples would often have something akin to
`.get0::<()>()?()?` which is a lot of things to interpret all at once.
Note that `get0` means "0 parameters" yet a type parameter is passed.
There's also a double function invocation which looks like a lot of
characters all lined up in a row.
Overall, I think that the previous design is starting to show too many
cracks and deserves a rewrite. This commit is that rewrite.
The new design in this commit is to delete the `getN{,_async}` family of
functions and instead have a new API:
impl Func {
fn typed<P, R>(&self) -> Result<&Typed<P, R>>;
}
impl Typed<P, R> {
fn call(&self, params: P) -> Result<R, Trap>;
async fn call_async(&self, params: P) -> Result<R, Trap>;
}
This should entirely replace the current scheme, albeit by slightly
losing ergonomics use cases. The idea behind the API is that the
existence of `Typed<P, R>` is a "proof" that the underlying function
takes `P` and returns `R`. The `Func::typed` method peforms a runtime
type-check to ensure that types all match up, and if successful you get
a `Typed` value. Otherwise an error is returned.
Once you have a `Typed` then, like `Func`, you can either `call` or
`call_async`. The difference with a `Typed`, however, is that the
params/results are statically known and hence these calls can be much
more efficient.
This is a much smaller API surface area from before and should greatly
simplify the `Func` documentation. There's still a problem where
`Func::wrapN_async` produces a lot of functions to document, but that's
now the sole offender. It's a nice benefit that the
statically-typed-async verisons are now expressed with an `async`
function rather than a function-returning-a-future which makes it both
more efficient and easier to understand.
The type `P` and `R` are intended to either be bare types (e.g. `i32`)
or tuples of any length (including 0). At this time `R` is only allowed
to be `()` or a bare `i32`-style type because multi-value is not
supported with a native ABI (yet). The `P`, however, can be any size of
tuples of parameters. This is also where some ergonomics are lost
because instead of `f(1, 2)` you now have to write `f.call((1, 2))`
(note the double-parens). Similarly `f()` becomes `f.call(())`.
Overall I feel that this is a better tradeoff than before. While not
universally better due to the loss in ergonomics I feel that this design
is much more flexible in terms of what you can do with the return value
and also understanding the API surface area (just less to take in).
[old-docs]: https://docs.rs/wasmtime/0.24.0/wasmtime/struct.Func.html#method.get0
* Rename Typed to TypedFunc
* Implement multi-value returns through `Func::typed`
* Fix examples in docs
* Fix some more errors
* More test fixes
* Rebasing and adding `get_typed_func`
* Updating tests
* Fix typo
* More doc tweaks
* Tweak visibility on `Func::invoke`
* Fix tests again
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
With the module linking proposal the field name on imports is now
optional, and only the module is required to be specified. This commit
propagates this API change to the boundary of wasmtime's API, ensuring
consumers are aware of what's optional with module linking and what
isn't. Note that it's expected that all existing users will either
update accordingly or unwrap the result since module linking is
presumably disabled.
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
* CompiledModule holds CodeMemory and GdbJitImageRegistration
* Store keeps track of its JIT code
* Makes "jit_int.rs" stuff Send+Sync
* Adds the threads example.
Looks like everything is in general passing now so it's probably time to
close#1521 and all other remaining tests that are failing are
classified under new more focused issues.
Closes#1521
This commit fixes an issue in Wasmtime where Wasmtime would accidentally
"handle" non-wasm segfaults while executing host imports of wasm
modules. If a host import segfaulted then Wasmtime would recognize that
wasm code is on the stack, so it'd longjmp out of the wasm code. This
papers over real bugs though in host code and erroneously classified
segfaults as wasm traps.
The fix here was to add a check to our wasm signal handler for if the
faulting address falls in JIT code itself. Actually threading through
all the right information for that check to happen is a bit tricky,
though, so this involved some refactoring:
* A closure parameter to `catch_traps` was added. This closure is
responsible for classifying addresses as whether or not they fall in
JIT code. Anything returning `false` means that the trap won't get
handled and we'll forward to the next signal handler.
* To avoid passing tons of context all over the place, the start
function is now no longer automatically invoked by `InstanceHandle`.
This avoids the need for passing all sorts of trap-handling contextual
information like the maximum stack size and "is this a jit address"
closure. Instead creators of `InstanceHandle` (like wasmtime) are now
responsible for invoking the start function.
* To avoid excessive use of `transmute` with lifetimes since the
traphandler state now has a lifetime the per-instance custom signal
handler is now replaced with a per-store custom signal handler. I'm
not entirely certain the purpose of the custom signal handler, though,
so I'd look for feedback on this part.
A new test has been added which ensures that if a host function
segfaults we don't accidentally try to handle it, and instead we
correctly report the segfault.
* Add AArch64 tests to CI
This commit enhances our CI with an AArch64 builder. Currently we have
no physical hardware to run on so for now we run all tests in an
emulator. The AArch64 build is cross-compiled from x86_64 from Linux.
Tests all happen in release mode with a recent version of QEMU (recent
version because it's so much faster, and in release mode because debug
mode tests take quite a long time in an emulator).
The goal here was not to get all tests passing on CI, but rather to get
AArch64 running on CI and get it green at the same time. To achieve that
goal many tests are now ignored on aarch64 platforms. Many tests fail
due to unimplemented functionality in the aarch64 backend (#1521), and
all wasmtime tests involving compilation are also disabled due to
panicking attempting to generate generate instruction offset information
for trap symbolication (#1523).
Despite this, though, all Cranelift tests and other wasmtime tests
should be runnin on AArch64 through QEMU with this PR. Additionally
we'll have an AArch64 binary release of Wasmtime for Linux, although it
won't be too useful just yet since it will panic on almost all wasm
modules.
* Review comments
* Compute instance exports on demand.
Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.
This also enables `Instance::get_export` to avoid doing a linear search.
This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.
* Compute module imports and exports on demand too.
And compute Extern::ty on demand too.
* Add a utility function for computing an ExternType.
* Add a utility function for looking up a function's signature.
* Add a utility function for computing the ValType of a Global.
* Rename wasmtime_environ::Export to EntityIndex.
This helps differentiate it from other Export types in the tree, and
describes what it is.
* Fix a typo in a comment.
* Simplify module imports and exports.
* Make `Instance::exports` return the export names.
This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.
This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.
* Remove `Instance::module`.
This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.
* Use a InstanceHandle utility function.
* Don't consume self in the `Func::get*` methods.
Instead, just create a closure containing the instance handle and the
export for them to call.
* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.
* Rename `Extern::func()` etc. to `into_func()` etc.
* Revise examples to avoid using `nth`.
* Add convenience methods to instance for getting specific extern types.
* Use the convenience functions in more tests and examples.
* Avoid cloning strings for `ImportType` and `ExportType`.
* Remove more obviated clone() calls.
* Simplify `Func`'s closure state.
* Make wasmtime::Export's fields private.
This makes them more consistent with ExportType.
* Fix compilation error.
* Make a lifetime parameter explicit, and use better lifetime names.
Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.
* More lifetime cleanups.
* Move most wasmtime tests into one test suite
This commit moves most wasmtime tests into a single test suite which
gets compiled into one executable instead of having lots of test
executables. The goal here is to reduce disk space on CI, and this
should be achieved by having fewer executables which means fewer copies
of `libwasmtime.rlib` linked across binaries on the system. More
importantly though this means that DWARF debug information should only
be in one executable rather than duplicated across many.
* Share more build caches
Globally set `RUSTFLAGS` to `-Dwarnings` instead of individually so all
build steps share the same value.
* Allow some dead code in cranelift-codegen
Prevents having to fix all warnings for all possible feature
combinations, only the main ones which come up.
* Update some debug file paths