Most of these optimizations are in the egraph `cprop.isle` rules now,
making a separate crate unnecessary.
Also I think the `udiv` optimizations here are straight-up wrong (doing
signed instead of unsigned division, and panicking instead of preserving
traps on division by zero) so I'm guessing this crate isn't seriously
used anywhere.
At the least, bjorn3 confirms that cg_clif doesn't use this, and I've
verified that Wasmtime doesn't either.
Closes#1090.
Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList.
To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments:
inst_values - returns an iterator that traverses values in the instruction and block arguments
map_inst_values - applies a function to each value in the instruction and block arguments
overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator
Co-authored-by: Jamey Sharp <jamey@minilop.net>
We have some operations defined on DataFlowGraph purely to work around borrow-checker issues with InstructionData and other data on DataFlowGraph. Part of the problem is that indexing the DFG directly hides the fact that we're only indexing the insts field of the DFG.
This PR makes the insts field of the DFG public, but wraps it in a newtype that only allows indexing. This means that the borrow checker is better able to tell when operations on memory held by the DFG won't conflict, which comes up frequently when mutating ValueLists held by InstructionData.
All instructions using the CPU flags types (IFLAGS/FFLAGS) were already
removed. This patch completes the cleanup by removing all remaining
instructions that define values of CPU flags types, as well as the
types themselves.
Specifically, the following features are removed:
- The IFLAGS and FFLAGS types and the SpecialType category.
- Special handling of IFLAGS and FFLAGS in machinst/isle.rs and
machinst/lower.rs.
- The ifcmp, ifcmp_imm, ffcmp, iadd_ifcin, iadd_ifcout, iadd_ifcarry,
isub_ifbin, isub_ifbout, and isub_ifborrow instructions.
- The writes_cpu_flags instruction property.
- The flags verifier pass.
- Flags handling in the interpreter.
All of these features are currently unused; no functional change
intended by this patch.
This addresses https://github.com/bytecodealliance/wasmtime/issues/3249.
The simplifier was performing an optimization to replace bitselect
with vselect if the all bytes of the condition mask could be shown
to be all ones or all zeros.
This optimization only ever made any difference in codegen on the
x64 target. Therefore, move this optimization to the x64 back-end
and perform it in ISLE instead. Resulting codegen should be
unchanged, with slightly improved compile time.
This also eliminates a few endian-dependent bitcast operations.
- Allow bitcast for vectors with differing lane widths
- Remove raw_bitcast IR instruction
- Change all users of raw_bitcast to bitcast
- Implement support for no-op bitcast cases across backends
This implements the second step of the plan outlined here:
https://github.com/bytecodealliance/wasmtime/issues/4566#issuecomment-1234819394
As discussed in the 2022/10/19 meeting, this PR removes many of the branch and select instructions that used iflags, in favor if using brz/brnz and select in their place. Additionally, it reworks selectif_spectre_guard to take an i8 input instead of an iflags input.
For reference, the removed instructions are: br_icmp, brif, brff, trueif, trueff, and selectif.
* cranelift: Remove iconst.i128
* bugpoint: Report Changed when only one instruction is mutated
* cranelift: Fix egraph bxor rule
* cranelift: Remove some simple_preopt opts for i128
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
Move from passing and returning u8 and u16 values to u32 in many of
the functions. This removes a number of type conversions and gives
a small compilation time speedup, around ~0.7% on my aarch64 machine.
Copyright (c) 2022, Arm Limited.
Peepmatic was an early attempt at a DSL for peephole optimizations, with the
idea that maybe sometime in the future we could user it for instruction
selection as well. It didn't really pan out, however:
* Peepmatic wasn't quite flexible enough, and adding new operators or snippets
of code implemented externally in Rust was a bit of a pain.
* The performance was never competitive with the hand-written peephole
optimizers. It was *very* size efficient, but that came at the cost of
run-time efficiency. Everything was table-based and interpreted, rather than
generating any Rust code.
Ultimately, because of these reasons, we never turned Peepmatic on by default.
These days, we just landed the ISLE domain-specific language, and it is better
suited than Peepmatic for all the things that Peepmatic was originally designed
to do. It is more flexible and easy to integrate with external Rust code. It is
has better time efficiency, meeting or even beating hand-written code. I think a
small part of the reason why ISLE excels in these things is because its design
was informed by Peepmatic's failures. I still plan on continuing Peepmatic's
mission to make Cranelift's peephole optimizer passes generated from DSL rewrite
rules, but using ISLE instead of Peepmatic.
Thank you Peepmatic, rest in peace!
* Encode vselect using BLEND instructions on x86
* Legalize vselect to bitselect
* Optimize bitselect to vselect for some operands
* Add run tests for bitselect-vselect optimization
* Address review feedback
Rather than outright replacing parts of our existing peephole optimizations
passes, this makes peepmatic an optional cargo feature that can be enabled. This
allows us to take a conservative approach with enabling peepmatic everywhere,
while also allowing us to get it in-tree and make it easier to collaborate on
improving it quickly.
After replacing an instruction with an alias to an earlier value, trying to
further optimize that value is unnecessary, since we've already processed it,
and also was triggering an assertion.
This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
Converting something like iadd.i64 on a 32-bits architecture into a
iadd_imm.i64 will result in the instruction being legalized back to an
iadd.i64 later on, creating unnecessary churn.
This commit implements avoid doing so, and changes the target ISA to a
64-bits platform for tests than ran into this, as well as making sure
this won't happen on 32-bits platforms.
It can actually only replace one result; don't try to make it generic
yet, since there's no point in doing so right now, and make it do the
dumb thing so it's not surprising to use.
when replacing BinaryImm, we use the prior arg, but later use the arg
that was replaced when writing an alias if we can determine the new op
is actually equivalent to a simple copy