This fixes some fuzz bugs that came about enabling simd where nan
canonicalization is performed on the fuzzers but cranelift would panic
on these ops for vectors. This adds some custom codegen with `bitselect`
to ensure any nan lanes are canonical-nan lanes in the canonicalized
operations.
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Change VMMemoryDefinition::current_length to `usize`
This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.
The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).
This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).
The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.
Closes#3022
* Add tests for memory.size at maximum memory size
* Add a dfg helper method
PR #3131 fixed the failing builds by allowing this field to be dead.
After looking at it further the field is not being used and can be
removedi completely.
One of the fields of `TargetIsa` isn't used in the
cranelift-codegen-meta crate, but instead of refactoring to try to
remove it this just adds `#[allow(dead_code)]` for now in the assumption
that when the old backends go away this will probably go away as well.
Fixes#2943, though not as optimally as may be desired. With x64 SIMD
instructions, the memory operand must be aligned--this change adds that
check. There are cases, however, where we can do better--see #3106.
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).
Most of the time, when people want logging for their Rust programs, they do
something like:
RUST_LOG=debug cargo run
This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:
RUST_LOG=debug,cranelift=info cargo run
The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:
RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...
Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
This commit addresses two issues:
* A panic when shifting any non i128 type by i128 amounts (#3064)
* Wrong results when lowering shifts with small types (i8, i16)
In these types when shifting for amounts larger than the size of the
type, we would not get the wrapping behaviour that we see on i32 and i64.
This is because in these larger types, the wrapping behaviour is automatically
implemented by using the appropriate instruction, however we do not
have i8 and i16 specific instructions, so we have to manually wrap
the shift amount with an AND instruction.
This issue is also found on x86_64 and s390x, and a separate issue will
be filed for those.
Closes#3064
When encoding constants as immediates into an RSE Imm12 instruction we need to take special care to check if the value that we are trying to input does not overflow its type when viewed as a signed value. (i.e. iconst.i8 200)
We cannot both put an immediate and sign extend it, so we need to lower it into a separate reg, and emit the sign extend into the instruction.
For more details see the [cg_clif bug report](https://github.com/bjorn3/rustc_codegen_cranelift/issues/1184#issuecomment-873214796).
Also, reorganize the AArch64-specific VCode instructions for unary
narrowing and widening vector operations, so that they are more
straightforward to use.
Copyright (c) 2021, Arm Limited.
As discussed in #3035, most backends have explicit
`unimplemented!(...)` match-arms for opcode lowering cases that are not
yet implemented; this allows the backend maintainer to easily see what
is not yet implemented, and avoiding a catch-all wildcard arm is less
error-prone as opcodes are added in the future.
However, the x64 backend was the exception: as @akirilov-arm pointed
out, it had a wildcard match arm. This fixes the issue by explicitly
listing all opcodes the x64 backend does not yet implement.
As per our tests, these opcodes are not used or need by Wasm lowering;
but, it is good to know that they exist, so that we can eventually
either support or remove them.
This was a good exercise for me as I wasn't aware of a few of these in
particular: e.g., aarch64 supports `bmask` while x64 does not, and there
isn't a good reason why x64 shouldn't, especially if others hope to use
Cranelift as a SIMD-capable general codegen in the future.
The `unimplemented!()` cases are separate from `panic!()` ones: my
convention here was to split out those that are logically just *missing*
from those that should be *impossible*, mostly due to expected removal
by legalization before we reach the lowering step.
These backends will be removed in the future (see
bytecodealliance/rfcs#12 and the pending #3009 in this repo).
In the meantime, to more clearly communicate that they are using
"legacy" APIs and will eventually be removed, this PR places them in an
`isa/legacy/` subdirectory. No functional changes otherwise.