The `convert_i64x2_imul` custom legalization checks the ISA flags for AVX512DQ or AVX512VL support and legalizes `imul.i64x2` to an `x86_pmullq` in this case; if not, it uses a lengthy SSE2-compatible instruction sequence.
Without this special instruction, legalizing to the AVX512 instruction AND the SSE instruction sequence is impossible. This extra instruction would be rendered unnecessary by the x64 backend.
fix(tagged-union): changed test programs to use new tagged union
generated code
fix(tagged-union): changed test programs to use new tagged union generated code
fix(tagged-union): removed local dependency and changed to point to 0.9.1 version of wasi
fix(tagged-union): added newline to gitignore, changed wasi version to 0.10.0
fix(tagged-union): removed gitignore as Cargo.lock is intentional
* Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
* CompiledModule holds CodeMemory and GdbJitImageRegistration
* Store keeps track of its JIT code
* Makes "jit_int.rs" stuff Send+Sync
* Adds the threads example.
This avoids the set uniqueness (hashing) test, reduces memory
churn when re-mapping virtual register onto real registers, and is
generally more memory-efficient.
It isn't used by anything except for the C API and all of our embedder-exposed
APIs are already internally `Rc`-based, so it doesn't make sense to use with
them.
If you aren't expecting `VMExternRef`'s pointer-equality semantics, then these
trait implementations can be foot guns. Instead of implementing the trait, make
free functions in the `VMExternRef` namespace. This way, callers have to be a
little more explicit.
This is enough to get an `externref -> externref` identity function
passing.
However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
In the `ModuleEnvironment::declare_signature` callback, also pass the original
Wasm function signature, so that consumers may associate this information with
each compiled function. This is often necessary because while each Wasm
signature gets compiled down into a single native signature, multiple Wasm
signatures might compile down into the same native signature, and in these cases
the original Wasm signature is required for dynamic type checking of calls.