* Enable simd fuzzing on oss-fuzz
This commit generally enables the simd feature while fuzzing, which
should affect almost all fuzzers. For fuzzers that just throw random
data at the wall and see what sticks, this means that they'll now be
able to throw simd-shaped data at the wall and have it stick. For
wasm-smith-based fuzzers this commit also updates wasm-smith to 0.6.0
which allows further configuring the `SwarmConfig` after generation,
notably allowing `instantiate-swarm` to generate modules using simd
using `wasm-smith`. This should much more reliably feed simd-related
things into the fuzzers.
Finally, this commit updates wasmtime to avoid usage of the general
`wasm_smith::Module` generator to instead use a Wasmtime-specific custom
default configuration which enables various features we have
implemented.
* Allow dummy table creation to fail
Tables might creation for imports may exceed the memory limit on the
store, which we'll want to gracefully recover from and not fail the
fuzzers.
* 2499: First pass on TableOps fuzzer generator wasm_encoder migration
- wasm binary generated via sections and smushed together into a module
- test: compare generated wat against expected wat
- note: doesn't work
- Grouped instructions not implemented
- Vec<u8> to wat String not implemented
* 2499: Add typesection, abstract instruction puts, and update test
- TableOp.insert now will interact with a function object directly
- add types for generated function
- expected test string now reflects expected generated code
* 2499: Mark unused index as _i
* 2499: Function insertion is in proper stack order, and fix off by 1
index
- imported functions must be typed
- instructions operate on a stack ie. define values as instructions
before using
* 2499: Apply suggestions from code review
- typo fixing
- oracle ingests binary bytes itself
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* 2499: Code cleanup + renaming vars
- busywork, nothing to see here
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
This new fuzz target exercises sequences of `table.get`s, `table.set`s, and
GCs.
It already found a couple bugs:
* Some leaks due to ref count cycles between stores and host-defined functions
closing over those stores.
* If there are no live references for a PC, Cranelift can avoid emiting an
associated stack map. This was running afoul of a debug assertion.